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Abstract

In this paper, we first document a new empirical finding by showing that the Euro-

pean Central Bank’s (ECB) monetary policy decisions significantly influence global energy

prices. Through Lucas-critique-robust counterfactual analysis, we then empirically study

the implications of this result for the transmission of monetary policy. Our findings re-

veal that a central bank’s ability to affect energy prices strengthens and accelerates the

monetary transmission to inflation dynamics, and alleviates the inflation-output trade-off.

We illustrate the relevance of these results by examining their role in the optimal policy

response to an energy supply shock. Our estimates show that monetary policy’s ability

to affect global energy prices effectively halves the necessary tightening to stabilize infla-

tion and the corresponding economic contraction, compared to a scenario in which energy

prices are unaffected by monetary policy.
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1 Introduction

After decades of low inflation, the global economy experienced a sharp surge in inflation

during 2021–2023. It is widely recognized that energy prices were a major driver of this infla-

tion episode (Bernanke and Blanchard, 2024), sparking renewed interest in the relationship

between monetary policy and commodity markets—particularly energy prices. Among the

economies most affected by the surge in energy prices was the euro area. As one of the world’s

largest economies and energy importers (see Figure 1), the euro area is highly exposed to fluc-

tuations in commodity prices. This high degree of exposure and economic power raises the

possibility that the European Central Bank’s (ECB) monetary policy actions could influence

global energy prices. This paper, therefore, first examines the ECB’s impact on global energy

prices and their role in the monetary transmission mechanism. Second, it explores how these

dynamics shape the optimal conduct of monetary policy in response to an energy price shock.

First, using a high-frequency event study analysis and a Bayesian proxy structural vector

autoregressive (BPSVAR) model, we show that ECB monetary policy transmits through

energy prices. More precisely, a contractionary ECB monetary policy shock leads to a strong

and persistent decline in both global oil prices and energy prices faced by consumers in

the euro area. To flesh out the importance of this result, we conduct a Lucas-critique-

robust counterfactual (McKay and Wolf (2023)), in which ECB policy is not able to influence

global oil prices. Under this counterfactual scenario consumer price inflation and inflation

expectations react considerably less to changes in the ECB’s policy stance — the response

is more than halved in the short term. Furthermore, we show using an approach akin to

the “Phillips-Multiplier” of Barnichon and Mesters (2021), that the ability to affect anergy

prices equally alleviates the inflation-output trade-off faced by the ECB by approximately

50%. Consequently, the ability to affect relatively flexible energy prices provides monetary

policy with a tighter grip on short- and even medium-term inflation dynamics.

Second, we investigate how the ECB should respond optimally to a supply-side energy

price shock and what role its ability to influence these prices play within the empirical frame-

work of McKay and Wolf (2023). We consider two different loss functions. We begin with a

stylized, single-mandate loss function that mirrors the ECB’s primary mandate of medium-

term price stability. We estimate that the optimal response to an oil price shock is a small,

front-loaded tightening that quickly curbs the inflationary impact while imposing only a mild

additional contraction in economic activity. Absent the ability to affect energy prices the

tightening required to achieve the same optimal stabilization is estimated to be more than

twice as large - as is the corresponding induced contraction in output. In the case of a central

bank loss function that balances output and inflation deviations, our results suggest that the

optimal response of the ECB to an energy price shock is close to a “looking-through” strategy.

When we compare this optimal response to the actual response of the ECB, we find that they

are very similar. Crucially, we show in a counterfactual scenario that the relatively muted

response to energy price shocks is only close to optimal because the ECB directly affects

global oil prices. Thus, energy prices can at times be the ECB’s friend rather than its foe.
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Figure 1: Role of the euro area in the global economy and oil market

Notes: real GDP (in US dollars) and crude oil import shares of the euro area (EA), the
United States (US) and China as a percentage of the world. GDP data from the IMF’s World
Economic Outlook database. Commodity import data are from UN Comtrade database.

In more detail, the paper first examines whether the ECB influences energy prices. As a

motivating exercise, we follow the monetary policy event study literature (Gürkaynak et al.

(2005); Altavilla et al. (2019); and many others) and use intra-day data to uncover the causal

effects of changes in the ECB’s monetary policy stance on the global oil price. Throughout

the paper the Brent crude oil price acts as a stand-in for the price of energy goods traded on

global financial markets – we refer to it as global energy price for short.1 Our findings indicate

that ECB policy decisions are rapidly transmitted to global energy prices, resulting in sizable

and immediate effects. To further investigate these dynamics, we employ a BPSVAR model

to analyze the business cycle and the dynamic effects of euro area monetary policy shocks

on energy prices, as well as their role in monetary transmission. Importantly, our analysis

shows that a contractionary monetary policy shock leads to a significant reduction in both

globally traded energy prices and the energy prices faced by euro area consumers. This effect

can be interpreted as follows: since the euro area is one of the world’s largest oil importers

(see Figure 1), changes in its monetary policy stance directly influence global oil and energy

demand, which, in line with the theoretical work of Auclert et al. (2023) and Bayer et al.

(2023), results in lower energy prices. Notably, these reductions in energy prices occur more

quickly and are substantially more pronounced than the changes in headline consumer price

indices. This is consistent with micro-data evidence showing that energy goods prices are

updated much more frequently than those of other consumer goods (Aucremanne and Dhyne

1This assumption is not critical for our analysis. In particular, the Brent crude oil price is highly correlated
with other major energy benchmarks, according to the IMF’s Primary Commodity Prices database: its un-
conditional correlation with WTI crude is 0.99, with Dubai crude is 0.99, and even with Dutch TTF natural
gas is 0.88. Also, the focus on oil prices in general is not critical, as we show in the online Appendix that,
conditionally on a monetary policy shock, the same effects also materialize for gas prices (see Appendix B and
E).
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(2004)).

Having established that European monetary policy does, in fact, influence energy prices,

we conduct a counterfactual exercise to assess the significance of this relationship for monetary

policy transmission in the euro area. Our analysis is based on an empirical counterfactual

scenario in which ECB decisions have no effect on global energy prices.2 Specifically, in

this counterfactual, the Organization of the Petroleum Exporting Countries (OPEC) adjusts

supply to keep the global oil price at its preferred level, thereby neutralizing any impact of

euro area monetary policy on global oil prices. We estimate this scenario using the method

developed by McKay and Wolf (2023), which accounts for the anticipatory effects of such

an OPEC policy rule change and is robust to the Lucas critique. To implement this ap-

proach, we draw on the literature on high-frequency identification of oil supply shocks (Känzig

(2021)) to jointly identify both short-term and medium-term oil supply news shocks within

our BPSVAR model. In the scenario where ECB decisions do not influence the global oil price,

the response of energy prices faced by euro area consumers to a monetary tightening is sub-

stantially dampened. Crucially, this also results in a much weaker transmission of monetary

policy to both inflation and inflation expectations. A comparison of the counterfactual and

baseline responses highlights that, by influencing rapidly adjusting energy prices, monetary

policy exerts significantly greater control over inflation dynamics—particularly in the short

to medium term. Following an approach similar to the “Phillips-Multiplier” of Barnichon

and Mesters (2021) we furthermore document that this also implies that the inflation-output

trade-off faced by the ECB is substantially alleviated, by around 50%, even in the medium

term.

Given the finding that the ECB’s ability to influence energy prices plays a critical role in

the transmission of monetary policy shocks, next, we study how this ability shapes the optimal

conduct of monetary policy in response to a supply-side shock that induces an inflation-

output trade-off. To this end, we employ the framework of McKay and Wolf (2023) to

compute optimal policy. We implement the approach by identifying an oil supply shock as

in Känzig (2021) and combine it with identified euro area monetary policy shocks. In line

with the literature (cf. Barnichon and Mesters (2023), Barnichon and Mesters (2024)), we

first define the optimal policy for the ECB as the policy that optimally stabilizes inflation

only in the medium term and thereby achieves the primary mandate. While this reflects the

institution’s formal primary mandate, it is a stylized representation of actual policymaking.

Therefore, we also consider a more realistic dual-mandate framework, where optimal policy

assigns equal weight to stabilizing both inflation and output. For both loss functions, we

2This scenario aligns with the narrative often advanced by ECB officials. For example, at the press con-
ference on February 3, 2022, Christine Lagarde responded to a question on this topic by stating: “If the ECB
was to . . . then raise interest rates in short order, do you think it would have any impact on energy prices?
No, it is not in the ambit of monetary policy to decide the price of the barrel that is organized predominantly
outside of Europe.” (Lagarde (2022)) The assumption that ECB policy does not affect global energy prices
is not only embedded in theoretical models used for policy analysis, but is also deeply rooted in the ECB’s
forecasting process (see Coenen et al. (2018) for an example and discussion).
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compare the optimal policy response to an oil supply shock with the optimal response under

the assumption that the ECB cannot influence global energy prices.

Under the ECB’s primary mandate of medium-term inflation stabilization, the optimal

policy response involves a modest, front-loaded tightening of monetary policy across both the

short and long ends of the yield curve. This approach effectively curbs the rise in inflation,

albeit at the cost of a slightly deeper but short-lived contraction in output. The underly-

ing rationale is that a more contractionary policy stance swiftly counteracts the initial surge

in oil prices, resulting in a substantially smaller increase in headline inflation and inflation

expectations. Notably, only a marginal additional decline in output is required to minimize

medium-term inflation deviations from target, as tighter ECB policy induces rapid and pro-

nounced declines in the relatively flexible energy prices. Therefore, our findings suggest that

the tightening necessary to optimally achieve the primary mandate is tightly linked to the

ECB’s ability to affect global energy prices. These findings underscore that the degree of

monetary tightening necessary to optimally achieve the ECB’s primary mandate is closely

tied to its ability to influence global energy prices. When we consider a dual mandate frame-

work—where the ECB assigns equal weight to stabilizing both inflation and output—the

optimal policy response aligns with a “looking-through” strategy in the face of a supply-

driven energy price shock. Interestingly, we find that the optimal response under the dual

mandate closely mirrors the ECB’s actual estimated response to an oil supply shock.

To further substantiate the importance of the ECB’s ability to influence energy prices,

we estimate the optimal policy response under the assumption that ECB policy decisions

have no effect on global oil prices. In this case, the results of this counterfactual exercise

reveal that, the ECB’s optimal response to an oil supply shock would require a significantly

stronger tightening of monetary policy, both at the short and long ends of the yield curve. As a

consequence, the resulting decline in output would be substantially larger. This pattern holds

under both the single-mandate framework—focused solely on inflation stabilization—and the

dual-mandate framework. These findings highlight that the ECB’s capacity to influence fast-

moving energy prices is a critical factor in minimizing the economic costs associated with

responding to energy price shocks.

The rest of the paper is structured as follows. In Section 2, we present the high-frequency

event study analysis. Section 3 describes the empirical BPSVAR framework used throughout

the paper. Section 4 examines if euro area monetary policy can affect energy prices. Section 5

studies the role of energy prices in the transmission of monetary policy. Section 6 investigates

how the ECB’s ability to affect energy prices shapes the optimal conduct of monetary policy.

The last section concludes.

Related literature. Our paper contributes to the literature that studies how monetary pol-

icy transmits to the economy (Christiano et al. (1999); Gertler and Karadi (2015); Miranda-

Agrippino and Ricco (2021); and many others). While the literature on monetary policy
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transmission is extensive, the specific role of energy prices has not been explored. In this

paper, we fill that gap by examining how the response of energy prices to a monetary policy

shock shapes its transmission to the economy. Importantly, our findings contribute to the

literature studying the transmission pace of monetary policy and provide further evidence

against the notion that monetary policy mostly transmits with long and variable lags (Buda

et al. (2023)). The literature has documented that when monetary policy shocks are identi-

fied using instruments constructed from high-frequency financial data, monetary policy affects

consumer prices already in the very short run (Miranda-Agrippino and Ricco (2021); Bauer

and Swanson (2023)). We not only confirm this finding but also provide a more structural

explanation for the quick response of consumer prices, which is tied to the ability of monetary

policy to affect highly flexible energy prices.

Furthermore, our work speaks to the literature studying how monetary policy should

react to an exogenous increase in energy prices. Previous studies have relied on dynamic

stochastic general equilibrium (DSGE) models which are prone to model misspecification

(Leduc and Sill (2004); Bodenstein et al. (2012); Natal (2012)) or have employed empirical

methods vulnerable to the Lucas critique (Bernanke et al. (1997), Kilian and Lewis (2011)).

We contribute to this literature by estimating the mandate-optimal monetary policy response

empirically within a framework that is robust to the Lucas critique and by studying how a

central bank’s ability to impact crude oil prices is crucial for the optimal policy reaction to

an oil supply shock. In this scope, Castelnuovo et al. (2024) comes closest to our analysis as

they use the same Lucas-critique-robust empirical approach for a related question. However,

while they focus on the role of the monetary policy response in the transmission of crude oil

price and food price shocks, we study how the central bank’s ability to impact the oil price

shapes its mandate-optimal policy reaction to an oil supply shock.

Lastly, our paper is closely related to the literature that studies the effects of monetary

policy on commodity prices. Existing work that utilizes the state-of-the-art approach of iden-

tifying monetary policy shocks in VARs using high-frequency monetary policy surprise series

finds that contractionary US monetary policy shocks decrease commodity prices (Miranda-

Agrippino and Rey (2020); Bauer and Swanson (2023)) and oil prices specifically (Degasperi

et al. (2023); Miranda-Pinto et al. (2023)).3,4 Meanwhile, Gazzani and Ferriani (2024) doc-

ument a similar transmission of Chinese monetary policy to commodity prices. Building on

these findings, we show that the oil price responds in a comparable manner to European

3Miranda-Agrippino and Ricco (2021) include the Commodity Research Bureau (CRB) commodity price
index in their baseline VAR but do not report the IRFs. Therefore, using their replication files while keeping
true to their baseline empirical specification, we produce the commodity price index IRFs and find that the
commodity price index declines significantly in response to a contractionary US monetary policy shock (see
Figure E.8 in the Appendix).

4A recent study that does not find this result is Gagliardone and Gertler (2023), who concludes that the
real oil price does not respond to US monetary policy shocks. In Appendix C, we replicate their analysis and
show that when the critique raised in Kilian (2024) regarding their aggregation of the monetary policy surprise
series and the simultaneous use of the average-of-the-month crude oil price is addressed, the oil price does in
fact strongly and significantly decline in response to a contractionary US monetary policy shock.
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monetary policy as well. Crucially, and in contrast to the existing work, we show that this

response has important implications for the transmission of monetary policy to inflation.

Additionally, we find that these effects extend to inflation expectations, further connecting

our paper to the interplay between energy prices and inflation expectations (Aastveit et al.

(2023); Wehrhöfer (2023); Jo and Klopack (2024)).

2 Motivating evidence: Monetary policy & energy prices at

high frequency

To start the analysis, we utilize the event study regression approach commonly employed in

the literature to study the effects of monetary policy on asset prices. Using intraday data,

we document that ECB monetary policy announcements impact global energy prices at high

frequency.5 For our baseline result we use the Brent oil price as our preferred measure of

global energy prices, but we show in Appendix B that the results are robust to using natural

gas prices instead. To put the results for the euro area into perspective, we compare them

with the for the U.S. and the U.K., which are a large open economy and a small open economy,

respectively.

To ensure comparability we measure unexpected changes in the interest rates — monetary

policy surprises — using the intra-day changes in the three-month-ahead federal funds futures,

the three-month overnight index swap (OIS) rate, and the three-month Libor rate in a narrow

window around monetary policy announcements for the US, the euro area, and the UK,

respectively.6 We follow Jarociński and Karadi (2020) and purge monetary policy surprises

from central bank information effects using changes in stock prices in the same window around

the monetary policy announcement. Specifically, if stock prices and interest rates move in

opposite directions, we label this a monetary policy shock. If not, we set the corresponding

entry to zero. This corresponds to what Jarociński and Karadi (2020) call the “poor man’s”

identification approach. We use tick data from the Refinitiv Tick History database to compute

the variation in the Brent crude oil price in the same narrow window around the monetary

policy announcements. Precisely, we measure the price variation in the ICE Brent crude oil

front-month futures (LCOc1), which is generally the benchmark global spot price quoted in

financial news.

To study the effects of monetary policy on the global oil price, we estimate the following

5Gürkaynak et al. (2005), Beechey and Wright (2009), and others have shown that intraday data yield more
precise point estimates of announcement effects than lower-frequency (daily) data. Rosa (2014) investigates this
premise for crude oil futures prices and finds that oil prices respond to a broader range of news announcements
than other U.S. asset prices, highlighting the importance of using intraday data for our analysis.

6Data sources are Gürkaynak et al. (2005), Altavilla et al. (2019), and Cesa-Bianchi et al. (2020). The
choice of the interest rate maturity (three-month) is not only widely used in the literature (Jarociński and
Karadi (2020),Cesa-Bianchi et al. (2020)) but also allows us to ensure comparability across countries given
data availability. Results are similar when using other maturities.
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high-frequency event study regression for the ECB, the Federal Reserve, and the Bank of

England separately:

poilt = αi + βimpsi,t + ϵi,t i ∈ [EA,US,UK]. (1)

poilt is the intraday percent variation in the Brent crude oil price (in US dollars) around the

monetary policy announcement on day t, and mpsi,t represents the corresponding monetary

policy surprise of country i.7

Table 1: Results of the event study regression for the euro area, US, and UK

EA US UK

β̂std −0.056∗∗ −0.078∗∗ 0.019

(0.026) (0.037) (0.037)

Sample 2002:1-2019:12 1996:1-2019:12 1997:6-2019:12

N 182 198 246

R2 (%) 3.37 2.64 0.38

Notes: Coefficient estimates β̂std measure the percentage change in the front month future
of the Brent crude oil price following a 1 standard deviation increase in the country-specific
monetary policy surprise. Heteroskedasticity-robust standard errors are reported in paren-
theses. *, **, *** represent statistical significance levels at 10%, 5%, and 1%, respectively.

The intra-day responses of the Brent crude oil price to a one standard deviation – i.e.

an average — contractionary monetary policy shock are presented in Table 1.8 The results

show that the Brent oil price declines immediately in response to an unexpected interest rate

increase in both the euro area and the US, while it remains unaffected by a similar increase

in the UK.9

This suggests that financial market participants update their expectations of the global

oil market in light of surprise policy actions by the ECB and the Federal Reserve. In turn,

7Sample for the euro area event study regression starts from 2002 following the suggestions from Altavilla
et al. (2019) and Andrade and Ferroni (2021) due to liquidity issues in the OIS during 1999-2001. Starting
sample for the US regression is 1996 due to the availability of intraday Brent crude oil price data. Sample for
the UK regression starts from June 1997 due to the availability of the UK monetary policy surprise series.

8Appendix B offers additional material and robustness along several dimensions such as sample period,
instrument choice and choice of the energy price.

9Our findings for the US are similar to the results in the relevant literature that makes use of intraday data
(Rosa (2014); Basistha and Kurov (2015)). However, there are two papers focusing on the euro area that have
contradicting results to ours (Torro (2019); Soriano and Torró (2022)). These two papers do not control for
central bank information effects, which is arguably a more prominent issue in the euro area rather than in the
US (Jarociński and Karadi (2020)). Furthermore, Torro (2019) uses daily data against the recommendation
of Rosa (2014) specific to crude oil prices.

7



this implies that, like the United States, the euro area functions as a large open economy in

the global energy market. Such behavior is consistent with the fact that, for much of our

sample period, the euro area was the world’s largest oil importer –— surpassed only by the

United States in earlier years and by China more recently (see Figure 1).

3 The empirical framework

The high-frequency event study shows that the ECB’s monetary policy has an immediate and

significant effect on energy prices. Motivated by this evidence, the rest of the paper studies

the dynamics of this relationship. Therefore, this section presents our time series model of

monetary policy and energy prices in the euro area. We first outline the general Bayesian

proxy structural vector-autoregressive (BPSVAR) model framework of Arias et al. (2021) that

allows us to identify dynamic causal effects with the use of instrumental variables. Next, we

discuss our model specification and endogenous variables. Finally, we present our identifying

assumptions in detail. Our empirical analysis in later sections requires the identification of

up to two structural shocks simultaneously. Therefore, we discuss our approach to identifying

both a single, as well as two shocks in the BPSVAR model. Note, however, that although the

type and the number of structural shocks we identify varies according to the application, all

shocks are identified in one consistent model with a constant set of endogenous variables.

3.1 Bayesian proxy SVAR model

We lay out the BPSVARmodel for the general case with k ≥ 1 proxy variables and k structural

shocks of interest. Following the notation of Rubio-Ramirez et al. (2010), the structural VAR

model with one lag and without deterministic terms can be written as:

y′
tA0 = y′

t−1A1 + ϵ′t, ϵ ∼ N(0, In), (2)

where yt is an n × 1 vector of endogenous variables and ϵt an n × 1 vector of structural

shocks. The BPSVAR framework builds on the following assumptions in order to identify k

structural shocks of interest: There exists a k × 1 vector of proxy variables mt that are cor-

related with the k structural shocks of interest ϵ∗t and orthogonal to the remaining structural

shocks ϵot . Formally, the identifying assumptions are

E[ϵ∗tm
′
t] = V

(k×k)
, (3a)

E[ϵotm
′
t] = 0

((n−k)×k)
, (3b)

and represent the relevance and the exogeneity condition, respectively. Below in section 3.3

we explicitly write out the identifying assumptions for two applications, with k = 1 and k = 2,

respectively.
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We estimate the BPSVAR model using the algorithm developed in Arias et al. (2021). In

this algorithm the model in (2) is augmented by the equations for the proxy variables. More

precisely, denote by ỹ′
t ≡ (y′

t,m
′
t), by Ãℓ the corresponding ñ × ñ coefficient matrices with

ñ = n + k, and by ϵ̃′ ≡ (ϵ′t,η
′
t) ∼ N(0, In+k), where ηt is a k × 1 vector of measurement

errors. The augmented structural VAR model is then given by

ỹ′
tÃ0 = ỹ′

t−1Ã1 + ϵ̃′t. (4)

In the estimation of the model in (4), the algorithm by Arias et al. (2021) imposes the

assumptions (3a) and (3b) to identify the structural shocks.

3.2 Data and model specification

Our baseline BPSVAR model for the euro area includes nine endogenous variables. Our

starting point is a standard monetary model featuring the 1-year constant maturity yield on

German Bunds as a monetary policy indicator, the industrial production index (excluding

construction) as a measure of economic activity, the Harmonised Index of Consumer Prices

(HICP) as a measure of the price level, and the BBB corporate bond spread to capture

financial conditions (cf. Gertler and Karadi (2015)). To this setup, we add variables that are

important for our analysis of the interplay of monetary policy with energy prices. Therefore,

we add the energy component of the HICP as a measure of energy prices in the euro area,

the Brent crude oil price, and one-year-ahead inflation forecasts from Consensus Economics

to capture inflation expectations. Since the euro area is a major energy importer, we also

add the EUR-USD exchange rate, as oil and other energy commodities are generally traded

in US dollars. Finally, we add the 5-year constant maturity yield on German Bunds since

our analysis is going to include the identification of forward guidance shocks later on. The

sources and more details on the data can be found in Appendix A.

The variables are measured in monthly frequency. Furthermore, all variables except inter-

est rates and credit spreads enter the SVAR in log levels (×100), so that the impulse responses

can be interpreted as percentage deviations. The BPSVAR model is estimated on a sample

from January 2002 to December 2019. As in our high-frequency event study, we exclude the

period 1999 − 2001 due to liquidity issues in the OIS contracts, which, as discussed below,

will serve as a proxy to identify monetary policy shocks. The model has 12 lags and includes

a constant. We follow Arias et al., 2021 and use flat priors for estimating the BPSVAR pa-

rameters.10 In addition, a relevance threshold is imposed to express the prior belief that the

proxy is informative to identify monetary policy shocks. In particular, we assume that the

identified structural monetary policy shocks account for at least 10% of the variance in the

10As in Born and Pfeifer (2021) and many other studies we impose the dogmatic prior that the SVAR is
stable implying that, after being hit by an exogenous shock, the endogenous variables eventually converge back
to their steady state.
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proxy.11

3.3 Identifying assumptions

Our empirical strategy to identify structural shocks relies on an instrumental variables — or

proxy — approach. In the following we first lay out how we identify a single structural shock

with the use of an appropriate proxy. To conduct empirical counterfactuals, the method by

McKay and Wolf (2023) requires the identification of as many structural shocks as possible

to minimize approximation error. Therefore, we subsequently present our identification as-

sumptions for the case of identifying two shocks simultaneously with the use of two proxy

variables.

Define matrices containing all 12 lags of the endogenous variables and the proxy as Y ′
t−1 =

(y′
t−1, . . . ,y

′
t−12) and M ′

t−1 = (mt−1, . . . ,mt−12). For the identification of a single structural

shock with a single proxy, we can derive the Equation governing the (scalar) proxy variable

from Equation (4) (see Appendix D for details):

mt = (Y ′
t−1,M

′
t−1)B1 + v1,1ϵ

∗
t +B2ηt, (5)

where V = v1,1 ̸= 0 by the relevance condition (3a). All remaining structural shocks, ϵot ,

are unrelated to mt by means of the exogeneity condition (3b). Note that relative to the

standard frequentist external instrument procedure as in Mertens and Ravn (2013), Equation

(5) illustrates that here the proxy variable is allowed to be serially correlated, predictable,

and affected by measurement error.

For the case of identifying two shocks with two proxies, define the structural shocks as

ϵ∗t ≡ (ϵ1,t, ϵ2,t)
′. In this case, we need additional identifying assumptions since the proxies are

allowed to be correlated with both structural shocks of interest. Instead of imposing poten-

tially contentious zero restrictions to disentangle the two shocks, we rely on relatively weak

magnitude restrictions to obtain set-identification. Specifically, our identifying assumptions

in the two-shock scenario are

m1,t = (Y ′
t−1,M

′
t−1)B1 + v1,1ϵ

∗
1,t + v1,2ϵ

∗
2,t +B2ηt, (6)

m2,t = (Y ′
t−1,M

′
t−1)B1 + v2,1ϵ

∗
1,t + v2,2ϵ

∗
2,t +B2ηt, (7)

v1,1 > v1,2, v2,2 > v2,1. (8)

As an example, we later identify two dimensions of monetary policy with high-frequency

surprises in short- and long-maturity OIS contracts: a conventional, or contemporaneous

11This is a weak requirement compared to the 20% threshold of Arias et al. (2021) and the ‘high-relevance’
prior of Caldara and Herbst (2019). As shown in Figure E.5 in the Appendix, our results are robust to reducing
the relevance condition to 0.
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monetary policy shock, and a forward guidance shock. Then, in words, we only assume that

the conventional monetary policy shock affects the short-maturity OIS contract proxy more

strongly compared to the forward guidance shock (v1,1 > v1,2), and vice versa.

Relative to the standard frequentist two-step estimation, the algorithm and the Bayesian

approach in general have the following advantages. First, we refrain from imposing poten-

tially contentious recursiveness assumptions between the endogenous variables when multiple

structural shocks are identified. Second, the single-step estimation of the BPSVAR model

is more efficient than the standard two-stage least squares estimation of proxy SVAR and

facilitates coherent inference. In fact, the Bayesian set-up allows exact finite sample inference

and does not require an explicit theory to accommodate potentially weak instruments. Third,

the BPSVAR framework allows the proxy variables to be serially correlated, predictable, and

affected by measurement error. Lastly, Bayesian inference is particularly convenient in the

presence of set identification, which arises in our applications with two proxies.12

4 Monetary policy and energy prices: SVAR evidence

The event study in Section 2 demonstrated that the ECB’s policy decisions impact energy

prices at high frequency. We now utilize the framework established in Section 3 to investigate

whether this effect also materializes at a monthly frequency and how it influences the economy.

To achieve this, we construct an instrument for a monetary policy shock using high-frequency

changes in interest rate futures around monetary policy announcements (similarly to Gertler

and Karadi (2015); Jarociński and Karadi (2020); Miranda-Agrippino and Ricco (2021)). In

this section, we analyze the euro area’s economic response to such a shock, compare our

findings with existing literature, and provide evidence supporting their robustness.

4.1 Dynamic response to monetary policy shock

We construct the monetary policy shock in three steps. First, we capture revisions in interest

rate expectations at different interest-rate maturities. More precisely, we compute the first

principal component of OIS surprises from the Altavilla et al. (2019) dataset with maturities

from one month up to one year. This “generic” monetary policy shock (Nakamura and

Steinsson (2018); Bauer and Swanson (2023)) has the advantage that is does not depend on one

specific maturity. Second, we purge the resulting surprise series from central bank information

effects (see Section 2). Third, to aggregate the surprises to monthly frequency, we employ

12We fully acknowledge the concerns that in the case of set identification, our uniform prior for the rotation
matrix, which is embedded in the approach of Arias et al. (2021), may even asymptotically influence our
results as forcefully raised by Baumeister and Hamilton (2019) and Giacomini and Kitagawa (2021). But
recent contributions by Inoue and Kilian (2021) and Arias et al. (2023) called into question the empirical
relevance of this concern in applied research with tightly identified sets as is the case in our applications.
Therefore we conduct standard Bayesian inference along the lines of Rubio-Ramirez et al. (2010) and the
subsequent literature.
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the approach proposed by Kilian (2024), which takes the accounting relationship between

daily and average monthly data into account. We denote this proxy by mMP
t,PC1. It enters the

framework in Section 3 Equation (5) in the following way: mt ≡ mMP
t,PC1 with ϵ∗t ≡ ϵMP

t,generic as

the corresponding structural shock. The shock represents a linear combination of monetary

policy shocks at different maturities which, in combination, move the term structure of interest

rates (Inoue and Rossi (2021) and McKay and Wolf (2023)).

In Figure 2, we illustrate the impulse responses to a one standard deviation contractionary

monetary policy shock. Both the 1-year and 5-year Bund yields increase by approximately

5 basis points on impact before reverting to zero. Industrial production experiences a slight

decline initially, reaching its lowest point after 10 months. Similarly, the domestic headline

consumer price index quickly declines, dropping to about 0.12% after a year and remaining

depressed. Concurrently, the euro appreciates against the dollar by just under 0.4% in the

short term, financial conditions tighten, and inflation expectations decline significantly and

persistently. Overall, the estimated dynamics for the endogenous variables align with standard

theory and previous findings in the literature.

The main result of this section is the substantial decline in global crude oil prices and the

energy prices faced by euro area consumers (HICP energy). The oil price drops sharply on

impact and remains subdued for over a year, with a trough response of 3%. Additionally, the

HICP energy price index falls by 0.65%, a much larger decline than that observed in the overall

HICP basket. Given that energy prices constitute about 10% of the overall HICP basket, a

back-of-the-envelope calculation suggests that the majority of the decline in the overall HICP

in the short- and medium-term can be attributed to the contractionary monetary policy

shock’s effect on oil prices and, subsequently, energy prices in the euro area.

Importantly, our finding that energy prices adjust more rapidly and significantly than

other goods is supported by the micro-data literature on price changes. For instance, Aucre-

manne and Dhyne (2004) analyze the micro-data used to compute the Belgian HICP and find

that the average price duration for energy goods is approximately one month. This contrasts

sharply with the median price duration of all goods in the basket, which is around 14 months.

From the perspective of a standard New-Keynesian Model, this implies that, all else being

equal, the Phillips curve for energy goods is steeper compared to that for average goods.

Consistent with this theoretical intuition, nearly all subcomponents of the HICP energy com-

ponent exhibit a significant decline in their prices (see Figure E.7 in the Appendix). Among

these, the price of fuels, which are more flexible, contracts the most.

4.2 Robustness and discussion of results

Our baseline empirical specification indicates that an exogenous increase in the one-year yield,

scaled to 100 basis points (peak response), results in a 9.3% decline in industrial production

(trough response). This represents a significantly larger industrial production elasticity to

12



Figure 2: Transmission of a generic EA monetary policy shock

Notes: Impulse responses to a one standard deviation monetary policy shock. Point-wise posterior
means along with 68% and 90% point-wise credible sets. Horizon in months. Impulse responses
for variables that do not correspond to interest rates or inflation rates are expressed in percent.
Impulse responses for inflation rates and interest rates are expressed in annualized percentage points.
Response of the credit spread is omitted to save space (see Figure E.1).

the interest rate than typically found in well-known monetary policy proxy SVAR studies,

which often focus on the US and use a considerably larger sample starting as early as 1973.

In Table F.1 in Appendix E, we demonstrate that, once differences in the sample period are

accounted for, our estimate aligns fully with the empirical evidence from existing studies for

the US, UK, and the euro area (with an average elasticity of 11.3%). This survey of the

literature suggests that, given state-of-the-art identification, a larger elasticity of output to

surprise changes in the interest rate is a characteristic of modern data, particularly for the

euro area.

The estimated impact of a contractionary monetary policy shock in our baseline specifi-

cation results in not only a significant contraction in industrial output but also a pronounced

decline in the Brent crude oil price, reflecting the severity of the overall economic downturn.

In Appendix F, we elaborate on a mechanism that explains this substantial drop in energy

prices. Key factors include the empirically relevant low elasticity of substitution for energy

goods and the fixed energy supply in the short run, which leads to a relatively steep demand

curve and a vertical supply curve. Consequently, for a given policy-induced fall in demand,

the price reacts strongly to balance the energy market. We then simulate a monetary tight-

ening of similar magnitude to our baseline results using a state-of-the-art general equilibrium

model (Bayer et al. (2023)) that incorporates such a market structure, demonstrating that the

energy price indeed drops by approximately the same amount. Finally, we show that, when
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measured in terms of the standard deviation of forecast errors, a 2% surprise fall in the oil

price is less rare than a 5 basis point unanticipated increase in the one-year yield, consistent

with theoretical arguments that energy prices are highly volatile (Figure F.2).

In Appendix E, we demonstrate that our results are robust to alternative specifications. To

address concerns about the relevant information set regarding the global oil market (Baumeis-

ter and Hamilton (2019)), we extend the model to include global oil production and global

industrial production (Figure E.2). Since the BPSVAR approach relies on the assumption

of (partial) invertibility to identify the monetary policy shock, we follow the suggestion of

Plagborg-Møller and Wolf (2021) and also report impulse responses based on their proposed

”internal instrument” approach, which remains robust even in the case of non-invertibility.

The results are very similar (Figure E.3). Furthermore, we document that gas prices also

fall substantially after a monetary policy shock, indicating that our choice of the Brent oil

price as a baseline measure of global energy prices does not significantly affect our results

(Figure E.4). The results are consistent across all variables in the VAR. Lastly, we show

that our findings remain largely unchanged when removing our prior on the relevance of the

proxy variable (Figure E.5) or when incorporating the pandemic into the estimation using

the Pandemic Priors approach of Cascaldi-Garcia (2022) (Figure E.6).

5 The role of energy prices in monetary transmission

The impulse response functions and back-of-the-envelope calculations from Section 4 suggest

that energy prices play an important role in the monetary transmission mechanism. To further

substantiate this point, we conduct an empirical counterfactual exercise in this section, in

which the global oil price is assumed not to respond to ECB monetary policy shocks. We

begin by outlining the general framework, then identify two additional structural shocks

required to implement the counterfactual methodology, and finally apply this approach to

examine how a monetary policy shock would propagate through the euro area economy and

how the inflation-output trade-off would be altered if the ECB were unable to influence global

oil prices.

5.1 Structural policy counterfactual: general framework

The approach to estimating impulse responses under the counterfactual OPEC policy rule

builds on the recent insights of McKay and Wolf (2023, henceforth MW). In particular, MW

develop an approach for constructing policy-rule counterfactuals empirically that is (i) robust

to the Lucas critique and (ii) recovers the true policy-rule counterfactual for a wide range of

underlying structural frameworks, including standard representative and heterogeneous-agent

New Keynesian models. The key components in their counterfactual analysis are impulse

responses to shocks to current and future policy. Specifically, they show that by combining the

impulse response function to the structural shock of interest —estimated under the baseline
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policy rule— with a particular sequence of impulse responses to policy (news) shocks, one can

uncover the impulse response functions to the structural shock under a counterfactual policy

rule.

Formally, MW consider a linear, perfect-foresight, infinite-horizon economy in terms of

deviations from the deterministic steady state for periods t = 0, 1, 2, ... . In sequence-space

notation, this economy can be described by a set of equations

Hxx+Hzz +Hϵϵ = 0, (9)

Axx+Azz + ν = 0, (10)

where x ≡ (x′
1,x

′
2, . . . ,x

′
nx
)′ stacks the time paths of the nx endogenous variables over nh

periods, analogously z stacks the time path of the nz policy instruments. The matrices H
summarize the behavior of agents in the non-policy block, while the matrices A describe the

baseline policy rule of interest. ϵ represents the nϵ non-policy structural shocks and ν the

nν policy (news) shocks; the latter are deviations from the policy rule announced at date

t but implemented only in some future period t + i, i ≥ 0. The key assumption reflected

in Equations (9) and (10) is that {Hx,Hz,Hϵ} do not depend on the coefficients of the

policy rule {Ax,Az}, so that policy affects the non-policy block’s decisions only through the

path of the instrument z, rather than through the policy rule per se. As shown in MW,

this assumption holds true for a broad range of structural frameworks frequently used in

counterfactual policy analysis such as standard representative and heterogeneous-agent New

Keynesian models.

Under the assumption that the solution exists and is unique, the solution to Equations

(9) and (10) can be written in impulse response space as(
x

z

)
= ΘA ×

(
ϵ

ν

)
, ΘA ≡ (Θϵ,A,Θν,A) ≡

(
Θx,ϵ,A Θx,ν,A

Θz,ϵ,A Θz,ν,A

)
. (11)

where ΘA collects the impulse responses of the policy instrument z and the non-policy vari-

ables x under the baseline policy rule summarized by A.

In the counterfactual analysis below, we are interested in analyzing impulse responses to

a non-policy shock ϵ under a counterfactual policy rule {Ãx, Ãz}. The policy block with the

counterfactual policy rule is then given by:

Ãxx+ Ãzz = 0. (12)

MW show that knowledge of the impulse responses ΘA under the baseline policy rule is

sufficient to determine the impulse responses to the structural shock of interest ϵ under any

counterfactual policy rule even without knowing the true underlying structural model that
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generates the data. In particular, they prove that

xÃ(ϵ) = Θx,ϵ,A × ϵ+Θx,ν,A × ν̃, zÃ(ϵ) = Θz,ϵ,A × ϵ+Θz,ν,A × ν̃. (13)

In words, the impulse response to the structural shock ϵ under the counterfactual policy

rule xÃ(ϵ) ≡ Θ
x,ϵ,Ã × ϵ is exactly equivalent to a combination of the corresponding impulse

responses under the baseline policy rule Θx,ϵ,A × ϵ and the impulse responses to a specific

sequence of policy news shocks ν̃. Intuitively, as long as the decisions of the non-policy block

depend on the (expected) path of the policy instrument rather than on the rule itself, it

does not matter whether the path is due to the systematic conduct of policy or to policy

news shocks. Consequently, the policy news shocks ν̃ are chosen such that the counterfactual

policy rule holds

Ãx [Θx,ϵ,A × ϵ+Θx,ν,A × ν̃] + Ãz [Θz,ϵ,A × ϵ+Θz,ν,A × ν̃] = 0. (14)

What needs to be determined are the expressions Θx,ν,A and Θz,ν,A in Equation (13).

Theoretically, this would require knowledge of impulse responses to news shocks that com-

municate changes in future policy over all possible nh horizons. In practice, however, it is

difficult, if not often impossible, to estimate impulse responses to policy news shocks ν. How-

ever, MW show that in practice, knowledge of a subset of the policy news shocks s̃ ⊆ ν̃ and

their impulse responses Θs,A from the empirical literature often is sufficient as long as each

entails a different future path of the policy instrument. In particular, they argue that using

even only a small number of shocks s that solve

min
s̃

||Ãx [Θx,ϵ,A × ϵ+Θx,s,A × s̃ ] + Ãz [Θz,ϵ,A × ϵ+Θz,s,A × s̃ ] ||, (15)

produces a reliable “best Lucas critique-robust approximation”.13

5.2 Structural policy counterfactual: application details

To estimate Θz,s,A Θx,s,A we identify OPEC-related oil supply news shocks using the proxy

variables constructed by Känzig (2021). These proxy variables capture high-frequency changes

in oil price futures around OPEC meetings, making them a valid instrument for OPEC oil

supply news shocks. Given that the accuracy of the approximations of Equation (14) depends

on the number of policy news shocks identified, we diverge from Känzig (2021), who uses only

the first principal component of changes in oil price futures at various horizons to identify a

13We compute this solution as follows: We first stack the system in Equation (14) across all the responses
of all the n = nx + nz endogenous variables x and the policy instrument z in Equation (14) and all horizons
nH = n×nh in order to arrive at ÃΘϵ,A × ϵ+ ÃΘν,A × s̃ = 0. Then we collect all impulse response functions
to the ns identified policy (news) shocks in ΘsA, and build Θν,A = [Θs,A,0(n×nh)×(nh−ns)]. We then solve

for s̃ = −
(
ÃΘν,A

)⋆

ÃΘA,ϵ × ϵ with
(
ÃΘν,A

)⋆

as the Moore-Penrose inverse of ÃΘν,A.
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single oil supply news shock. Instead, we use high-frequency changes in the 3-month (moil
t,3m)

and 24-month (moil
t,24m) futures to identify short-term (νoilt,short) and medium-term (νoilt,medium)

oil supply news shocks. In doing so, we incorporate recent suggestions in the literature to refine

the identification of these oil supply news shocks (Degasperi et al. (2023), Kilian (2024)).14

In the context of our general identifying assumptions framework in Equation (6), this implies

that we set ϵ∗t ≡ (ϵ∗1,t, ϵ
∗
2,t)

′ = (νoilt,short, ν
oil
t,medium)′ and mt ≡ (m1,t,m2,t)

′ = (moil
t,3m,moil

t,24m)′.

Figure 3: Transmission of short-run (purple) and medium-run (magenta) oil supply news
shocks

Notes: Impulse responses to the short-run oil supply news shock and corresponding 68% credible sets in
magenta. Impulse responses to the medium-run oil supply news shock and corresponding 68% credible sets
in purple. Horizon in months. We normalize the short-run (medium-run) oil supply news shock to increase
the oil price on impact (after twelve months). Responses of the credit spread, exchange rate, and 5-year
government bond yield are omitted to save space. See notes to Figure 2 for scaling of variables.

We present the impulse responses to these two oil supply news shocks in Figure 3.15 In

summary, both shocks increase the price of oil and lead to a contraction of output as well

as a rise in consumer prices in the euro area. The response of the oil price and most of the

other endogenous variables to the short-term oil supply news shock is strong and immediate,

whereas the medium-term oil supply shock has more delayed effects on the oil price and the

14In particular, as we use average monthly data, we aggregate the surprises to monthly frequency using the
approach proposed by Kilian (2024) instead of summing over them as in the original paper by Känzig (2021).
Furthermore, we cleanse the surprises from possible oil demand shocks using the approach of Degasperi (2023).

15To maximize the number of observations we start the estimation directly in 1999 because the proxies
proposed in Känzig (2021) do not suffer from the same liquidity issue as OIS contracts during the early period
of the euro area.
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broader of economy.

5.3 Structural policy counterfactual: What if OPEC stabilizes the oil

price?

With the two estimated oil supply news shocks, we are now in the position to construct em-

pirical policy rule counterfactuals to gauge the role of energy prices in monetary transmission

in the euro area.

Specifically, we investigate how the euro area economy would respond if the ECB did

not influence the oil price. The particular counterfactual we consider is a scenario in which

OPEC aims to stabilize the global oil price by adjusting its oil supply accordingly. In other

words, the counterfactual OPEC policy rule is such that it aims to stabilize the oil price at

its steady-state level, i.e. Et[p̂
oil
t+s] = 0 ∀t, s ≥ 0.16 This rule implies that in Equation (14), Ã

becomes a selection matrix that selects the entries in Θϵ,A and Θν,A corresponding to the oil

price. The remaining components of the equation have been estimated: the impulse response

functions to a generic monetary policy shock (Figure 2) and the two oil-price news shocks

(Figure 3. We then combine these impulse responses to approximate the solution of Equation

(14) that characterizes the counterfactual scenario where OPEC stabilizes the oil price.17

The results of this exercise are shown in Figure 4. In the counterfactual scenario depicted

by the golden line, the reduced responsiveness of the oil price to an ECBmonetary policy shock

leads to a much smaller response of energy prices in the euro area, consumer price inflation,

and inflation expectations. Notably, the transmission of monetary policy to consumer prices

is more than halved in the absence of an oil price response. Conversely, industrial production

declines more than in the baseline scenario, as the stabilizing effect of the fall in the oil price

is absent in the counterfactual scenario. This suggests that the observed reduction in the

policy-induced decline in the HICP in the counterfactual scenario is not due to changes in the

prices of domestically produced goods, but rather due to the inability of the ECB to affect

global oil prices.

5.4 The inflation-output trade-off in the counterfactual scenario

The counterfactual analysis suggests that the ability to influence global energy prices may play

a crucial role in the inflation-output trade-off faced by a central bank. To quantify this effect,

16It is important to note that the existence of such a policy rule for OPEC is not a new assumption in the
literature. As already discussed by Leeper et al. (1996), the assumption that OPEC-related shocks, such as
those identified for instance by Känzig (2021), exist is equivalent to the assumption that there is a policy rule
that characterizes the systematic part of the corresponding equation (see Caldara and Kamps (2017) for a
discussion).

17This implies that we condition on the point-estimates in Figure 2, which is consistent with standard
practice in the policy counterfactual literature, which tends to take initial point estimates as given (see, e.g.,
Rotemberg and Woodford (1997), Eberly et al. (2020), Wolf (2023), McKay and Wolf (2023)). Given the
results in Plagborg-Møller and Wolf (2021), we could equivalently run local projections for each identified
shock and then combine these as done in Broer et al. (2024).
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Figure 4: Monetary transmission if EA MP can (blue) and cannot (gold) affect oil prices

Notes: Impulse response functions to a one standard deviation monetary policy shock showing the point-wise
posterior means along with 68% point-wise credible sets in blue. Horizon in months. The golden line with
diamonds shows the point-wise posterior means of the counterfactual where EA monetary policy does not
affect the oil price. We approximate the solution to the counterfactual using the “best Lucas-Critique-robust
approximation” of McKay and Wolf (2023), where we follow McKay and Wolf (2023) and condition on the
point estimate to the monetary policy shock depicted in Figure 2. We report corresponding credible sets in
Figure G.1 of the Appendix. Responses of the credit spread, exchange rate, and 5-year government bond
yield are omitted to save space. See notes to Figure 2 for scaling of variables.

we follow a strategy very much akin to the non-parametric “Phillips-Multiplier” approach of

Barnichon and Mesters (2021). We characterize this trade-off by measuring the average fall in

inflation caused by a change in the monetary policy stance that lowers industrial production

by 1% over the next h periods (see Appendix G.1 for details). In the spirit of Barnichon and

Mesters (2021) we compute the “Output-Phillips-Multiplier” as

Ph =
Θh

π̄,νmp

Θh
Ȳ ,νmp

, (16)

where Θh
Ȳ ,νmp (Θh

π̄,νmp) measures the horizon h impulse response of the average of industrial

production (consumer price inflation) to a monetary policy shock νmp. We estimate this

statistic for the baseline scenario and the counterfactual scenario. The results from this

exercise are shown in Figure 5.

It becomes evident that the ECB’s ability to influence energy prices alleviates the inflation-

output trade-off substantially. For instance, engineering a 1% decline in industrial production
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Figure 5: Inflation-Output Trade-off if EA MP can (blue) and cannot (gold) affect oil prices
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Notes: Point-wise median of the Output Phillips-Multiplier in blue. Counter-
factual output Phillips-Multiplier under the assumption that EA monetary
policy does not affect energy prices is depicted in gold. We only plot 68%
credible sets to not distort the scale of the figure as the posterior distribution
is very much skewed to the left.

over the next year is estimated to result in a 0.27% reduction in average inflation in the baseline

scenario. This changes substantially in the counterfactual scenario, where the same policy-

induced fall of industrial production only leads to a 0.12% reduction in average inflation.

Thus, the ability of the ECB to affect global energy prices alleviates the inflation-output

trade-off by approximately 55%.

Barnichon and Mesters (2021) demonstrates that if the true underlying model were char-

acterized by a New-Keynesian Phillips Curve, this method would recover its slope with respect

to changes in industrial production. Thus, when viewed through the lens of this model, our

estimates suggest that this slope is much steeper when monetary policy can affect energy

prices. Intuitively, and consistent with the microdata and the intuition outlined above, en-

ergy prices are updated much more frequently than other goods (implying a lower Calvo

parameter), causing the slope of the aggregate Phillips curve to be steeper when monetary

policy affects these goods.

6 Implications for the optimal policy response to supply shocks

The inflation-output trade-off faced by a central bank is particularly important when mon-

etary policy faces a supply-side shock (Woodford (2003), Blanchard and Gaĺı (2007), Gaĺı

(2015), Fornaro and Wolf (2023)). Our findings show that the ECB’s ability to influence

energy prices is a critical factor shaping this trade-off. To illustrate the significance of this

result, we examine its implications for the optimal conduct of monetary policy. Specifically,
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we focus on a scenario in which the euro area faces an exogenous, supply-driven increase

in oil prices. In this context, we consider two types of policy mandates: one focused solely

on medium-term inflation stabilization, and another that targets the joint stabilization of

both inflation and output. In both cases, we demonstrate how the ECB’s mandate-optimal

response depends on its capacity to affect energy prices.

Following MW, we approach this question empirically. First, we outline the general frame-

work for computing the transmission of a shock under the mandate-optimal policy. Applying

this framework to the question at hand necessitates the identification of a “generic” oil supply

shock and its effects on the euro area economy, as well as mapping the ECB’s mandate into

a general loss function. These ingredients allow us to present the mandate-optimal policy

responses under both mandate types and compare them to the corresponding responses in a

counterfactual scenario where the ECB lacks the ability to influence energy prices.

6.1 Computing optimal policy counterfactuals

In this section, we outline the setup for computing the mandate-optimal policy responses to

an exogenous shock. This includes the identification of the supply shock and two monetary

policy shocks necessary for the analysis.

6.1.1 The framework to compute optimal policy counterfactuals

The approach of MW to estimating policy rule counterfactuals, discussed in Section 5.1, can

be readily extended to compute impulse responses under the optimal policy. Specifically, in

line with Barnichon and Mesters (2023), MW define the optimal policy response as the one

that implements an allocation allowing the policymaker to optimally achieve its mandate.

While this definition of optimality differs from the standard textbook definition, in which the

policymaker seeks to maximize a measure of welfare —whose definition is inherently tied to

a particular model and calibration— Barnichon and Mesters (2023) and McKay and Wolf

(2022) convincingly argue that it is the “relevant objective-function for real-world central

banks” (McKay and Wolf (2022, p.3)).

In particular, suppose the central bank minimizes the quadratic loss function of the form

L =
1

2

nx∑
i=1

λix
′
iWx′

i =
1

2
x′(Λ⊗W )x (17)

where the xi represents the time path of the endogenous variable i, λi describes the policy

weights attached to that variable with Λ = diag(λ1, λ2....λnx). The matrix W summarizes

the effects of time discounting in the policymaker’s preferences and can be (potentially) pa-

rameterized using a single discount factor β. MW show that the optimal policy problem can

be stated in impulse-response space such that the loss function Equation (17) is minimized

subject to Equation (11). In particular, the approach utilizes the observation that the imple-
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mentable space of allocations for the endogenous variables x and for the policy instrument z

is fully characterized by the impulse responses Θν,A to the sequence of policy (news) shocks

ν: [
x

z

]
= Θν,A × ν. (18)

The resulting optimality condition, which is substituted into the policy block of Equation

(10), is given by:

A⋆
x = (λ1Θ

′
x1,ν,AW,λ2Θ

′
x2,ν,AW, . . . , λnxΘ

′
xnx ,ν,AW ), (19)

A∗
z = 0,

where Θxi,ν,A is the matrix of impulse responses of variable i to all shocks in ν under the

estimated policy rules (A). 18 Although numerically equivalent to previous approaches in

the literature (see, e.g., Svensson (1997)), here, the optimal policy rule is fully characterized

by impulse responses to policy (news) shocks, all of which can be, in theory, estimated from

the data.

In practice, researchers may not be able to identify the entire menu of policy shocks ν

but only a subset (s̃ ⊂ ν). In this case, the set of hypothetical, feasible allocations can then

no longer be described by Equation (18) but is rather given by

y = Θν,A × s̃ (20)

with y = (x′, z′)′. In such a scenario, the monetary policy authority chooses the optimal

policy rule (Equation (19)) and the corresponding allocation of y that minimizes the loss

function in Equation (17) within the empirically identified space described by Equation (20).

6.1.2 Ingredient 1: two loss functions

To apply this framework to the question at hand, the first key component is to determine the

ECB’s relevant loss function. First, we follow McKay and Wolf (2022) and Barnichon and

Mesters (2023) by conservatively deriving the loss function from the central bank’s primary

mandate. This approach provides a simple benchmark to evaluate the role of energy prices

and their response to European monetary policy in the ECB’s mandate-optimal conduct of

monetary policy and illustrates the key mechanism. Second, we incorporate the secondary

mandate into the analysis.

The ECB’s primary mandate is to maintain price stability, which it defines as an inflation

target of 2% over the medium term. Therefore, in our loss function, we aim to minimize the

deviations of contemporaneous and future HICP inflation from the steady state. Although

there is no clear definition of the medium-term horizon, there is good evidence based on

18Detailed derivations for this result can be found in Appendix H.1
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the ECB’s own projections that in practice, the relevant horizon corresponds to 6-8 quarters

(Paloviita et al. (2021)). Therefore, we model the ECB’s focus on the medium term by giving

a higher weight to the inflation deviations that are present 6-8 quarters after the initial shock.

Out of these considerations, the loss function takes the following form:

L = λππ
′Wπ, (21)

with λπ = 1. The weighting matrix is defined as W = (diag(β24, . . . β2, β, 1)).19 Additionally,

π = DPHICP represents the transformed impulse responses of the (log) level of the HICP,

denoted as PHICP. The operator D appropriately converts these impulse responses to changes

in year-on-year inflation rates. Furthermore, we set the discount factor β such that, in a

standard New Keynesian model, the corresponding annualized real interest rate would be

2%.20

While instructive for fleshing out the key mechanism, the highly stylized loss function that

is solely based on the ECB’s primary mandate implies that the economic costs of the additional

tightening are of no concern to the policymaker in the scenario. Therefore, as a next step, we

incorporate the secondary mandate into the central banks’ objective function. The secondary

mandate loosely states that the ECB should “ [...] support the general economic policies

of the Union [...]” (Treaty on the Functioning of the European Union (2016, §127(1))). As

one of these goals is “balanced economic growth” (Treaty on European Union (2012, §3(3))),
an arguably simplified interpretation of the secondary mandate is that the ECB should also

aim to stabilize economic activity. Albeit stylized, this allows us to integrate the inflation-

output trade-off faced by the central bank into the loss function by adding an additional term

containing the deviations of output as measured by deviations of GDP from trend y.21

L = λππ
′Wπ + λyy

′Wy, (22)

To best flesh out the differences between a dual and single-mandate loss function, we

assume that in this scenario the ECB cares equally about output and inflation, implying that

we set λy = λπ.
22

19This is only a linear approximation to the weighting problem, where the deviation at the last horizon (24
months) has the highest weight and the weight of deviations increases linearly. A quadratic approximation
would not change the result significantly.

20We note that, given the focus on a single objective π, the weighting matrix should not matter in theory,
if in our application, the ECB were to operate in the fully unconstrained space of implementable allocations
of Equation (18). Intuitively, if the ECB in our application had perfect knowledge of and perfect access to
all 24 instruments (shocks) ν, it could perfectly stabilize the 24 targets that have a positive weight in the
loss function. Since we do not fully identify the full menu of policy shocks ν, we restrict the set of possible
allocations that can be implemented to the space of empirically identified policy shock paths, which implies
that the weighting matrix matters because the central bank in our application lacks the tools to perfectly
stabilize inflation at all horizons.

21We assume that the trend is unaffected by oil supply shocks and the monetary policy rule.
22To map industrial production deviations from our SVAR into GDP deviations, we scale the hypothetical

equal weight that we want to give to GDP λGDP by the relative variance of GDP and industrial production
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6.1.3 Ingredient 2: an identified oil supply shock

The second key component in estimating the ECB’s mandate-optimal response to a supply

shock is the estimated impulse response functions to such a shock. As in Section 5.3, we

identify an oil supply shock following Känzig (2021). Specifically, we use high-frequency

changes in oil price futures to identify OPEC-related changes in oil supply. This time, however,

we identify only one “generic” oil supply news shock and do not distinguish between short-

and medium-run oil supply news. See Inoue and Rossi (2021) and Caravello et al. (2023)

for a similar interpretation of identified monetary policy shocks as a linear combination of

underlying shocks. Just as we did for the monetary policy shock in Section 4, we employ

the first principal component (mOIL
t,PC1) of the changes in oil price futures from one month up

to one year. In the language of our identifying assumptions framework in Equation (5) this

implies that we set ϵ∗t ≡ ϵoilt,generic and mt ≡ mOIL
t,PC1. We interpret this shock as news about

oil supply policies at different maturities that, in combination, shift the current and expected

future price of oil (Inoue and Rossi (2021), McKay and Wolf (2023)).

The resulting impulse responses, depicted in blue in Figure 7, illustrate the transmission

of an average, one standard deviation oil supply news shock. Consistent with Känzig (2021),

the oil supply shock leads to a long-lasting increase in the Brent oil price, resulting in higher

consumer energy prices, inflation, and inflation expectations. Importantly, this rise in energy

costs and inflation is not just a short-term phenomenon but extends into the medium term.

Additionally, the shock creates an output-inflation trade-off by inducing a delayed yet signif-

icant economic contraction. In line with the conventional wisdom that ”in the past, central

banks have typically looked through energy shocks” (Schnabel (2022)), the estimated mon-

etary policy response does not appear to counteract the inflationary pressures. Notably, it

not only tolerates the increase in energy prices and inflation but even slightly lowers interest

rates, possibly to mitigate the economic downturn.

6.1.4 Ingredient 3: two identified monetary policy news shocks

As the final ingredient, we need to identify two euro area monetary policy shocks to ap-

proximate the solution to the counterfactual in Equation (20). Specifically, we utilize high-

frequency changes in the 3-month (mMP
t,3m) and 24-month (mMP

t,24m) futures to identify a short-

term (νMP
t,short) and a medium-term (νMP

t,medium) monetary policy news shock. These shocks can

be interpreted as shifting different segments of the yield curve.23 Both shocks are incorpo-

rated into the framework in Section 3, Equation (5), as follows: we define ϵ∗t ≡ (ϵ1,t, ϵ2,t)
′ =

(νMP
t,short, ν

MP
t,medium)′ and m∗

t ≡ (m1,t,m2,t)
′ = (mMP

t,3m,mMP
t,24m)′. The impulse responses to these

(IP) such that λy = λIP = λGDP × σ2(GDP)

σ2(IP)
.

23Given our identifying assumptions, the “generic” monetary policy shock that we identify in Section 4 should
best be thought of as a linear combination of these two shocks. See Inoue and Rossi (2021) and Caravello et al.
(2023) for a similar interpretation of identified monetary policy shocks as a linear combination of underlying
shocks.
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monetary policy shocks are presented in Figure 6, aligning with the results in the empirical

literature. In summary, the short-term monetary policy shock primarily affects the short

end of the yield curve, consistent with a conventional monetary policy shock. Conversely,

the medium-term monetary policy shock influences both short-term (1-year) and long-term

(5-year) yields, resembling a forward guidance type shock. Both shocks exhibit similar qual-

itative patterns, and their effects are consistent with existing empirical evidence for these

types of shocks (Swanson (2024), Ricco et al. (2025), Miranda-Agrippino and Ricco (2023),

Lakdawala (2019); see Rossi (2021) for a comprehensive literature review).

Figure 6: Response to a short-run (crimson red) and medium-run (sky blue) EA MP shock

Notes: Impulse responses to a short-run (medium-run) EA monetary policy shock in crimson red (sky blue)
alongside 68% credible sets. We normalize the responses such that the 1-year (5-year) yield increases on
impact. Response of the credit spread is omitted to save space. See notes to Figure 2 for scaling of variables.

6.2 Oil supply shock transmission under primary-mandate-optimal policy

Equipped with the oil-supply shock ϵt = ϵoilt,generic and the two policy shocks s̃ = [νMP
t,short, ν

MP
t,medium]

we compute the transmission of an oil supply shock under the assumption that the ECB aims

to optimally achieve its primary mandate described by Equation (21) subject to the space of

all possible allocation it can achieve as characterized by Equation (20). The results from this

exercise are depicted by the black circled lines and bars in Figure 7.

Contrary to the observed empirical response (blue line), the primary-mandate-optimal

response (black line) does not suggest that the ECB should lower short- and longer-term

interest rates. Instead, to optimally stabilize inflation, the ECB under this scenario quickly

raises interest rates to counteract the inflationary effects of the 3.5% increase in oil prices. It is

important to emphasize that, despite the stylized loss function focusing solely on the primary
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mandate, our estimates do not support an excessive rate hike by the ECB following an oil

supply shock. Nevertheless, this slight change in the policy stance stabilizes approximately

72% of the oil supply shock-induced deviations of inflation from target (first panel in the

last row). The cost, relative to the scenario under the empirical monetary policy rule, is

a front-loaded contraction in output. However, this strategy not only optimally stabilizes

medium-term inflation and inflation expectations (see Figure H.1) but the initial additional

output contraction is offset with higher output in the medium term. Therefore, on average,

the economic contraction is only 10% higher under the primary-mandate optimal response

(second panel in the last row).

One possible explanation for this relatively benign outcome is the quick and strong re-

sponse of energy prices to a monetary contraction. As documented in previous sections,

energy prices are comparatively flexible and react much faster and more strongly to changes

in demand than other domestically produced goods in the HICP basket. As a result, to fulfill

its primary mandate in the face of an exogenous increase in energy prices, the ECB does

not need to tighten excessively and persistently, thereby possibly inducing a major output

contraction. In fact, a large part of the adjustment is borne by relatively flexible oil/energy

prices, which on average remain 30% below the corresponding path under the empirical policy

rule (third panel in the last row). In the next section, we examine this hypothesis in more

detail.

6.3 Primary-mandate-optimal policy response when the ECB does not in-

fluence energy prices

In this section, we substantiate the notion that the response of global energy prices to euro

area monetary policy allows the ECB to optimally achieve its mandate with only limited

increases in interest rates. To explore this, we conduct a thought experiment: What would

the optimal monetary policy response be to the same exogenous increase in Brent oil prices,

if the ECB could not influence global energy prices?

Specifically, we are interested in the optimal allocation y when the empirically identified,

implementable space of possible allocations is not described by Equation (20), but rather by

y = Θ
ν,Ã × s̃ (23)

Here, the subscript Ã indicates that the space is now characterized by counterfactual impulse

responses. We construct these counterfactual impulse responses for the two identified mone-

tary policy shocks s̃ in a manner analogous to our approach in Section 5.1.24 The propagation

of an oil supply shock under the resulting counterfactual optimal policy rule is depicted by

24A detailed step-by-step summary of our approach to estimating the optimal monetary policy response to
an oil supply shock, under the assumption that the ECB’s decisions do not affect global oil prices, can be
found in Appendix H.2.
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Figure 7: Oil supply shock transmission under different (optimal) monetary policy rules

Implied by
exog. oil price

Approximation error

Notes: Impulse response functions to a one standard deviation oil supply shock showing the point-wise
posterior means along with 68% and 90% point-wise credible sets in blue. The black circled lines (magenta
crossed lines) show the responses of the endogenous variables under optimal policy with a single mandate
(dual mandate) loss function described in Equation (21) ((22)). The green lines with diamonds show the
corresponding estimate for the single mandate loss function under the counterfactual assumption that the
ECB’s monetary policy decisions do not affect the oil price. This implies that in this scenario, the oil price
path is exogenous and does not change in response to a change in the ECB’s policy stance. Therefore, if it
weren’t for the approximation error, the green and blue lines for the oil price panel would coincide. To avoid
cluttering, we report the time series of approximation errors in Figure H.2 of the Appendix. We measure the
average policy implied changes for the variables in the bottom row as

∑
(|xt,A⋆ | − |xt,A|)/

∑
|xt,A|, where

xt is the impulse response of the variable and the superscript A⋆ indicates the counterfactual policy rule.
Because the central bank aims to stabilize inflation, we define inflation deviations as absolute deviations from
the target |πt| for ease of interpretation. Figure H.1 of the Appendix contains the responses of the remaining
variables. See notes to Figure 2 for scaling of variables.

the green lines and bars in Figure 7.

Note that in this application, the oil price remains unaffected by changes in the conduct
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of monetary policy, so its path, up to approximation error, is the same as in the scenario

under the empirical policy rule (third panel in the last row). When comparing the impulse

response functions under primary-mandate-optimal policy from the last subsection (black)

and those in the counterfactual scenario (green), it becomes clear that monetary policy needs

to tighten significantly more to stabilize inflation when it does not influence global energy

prices.25 When cumulated over all periods, the additional tightening required to go from

the observed interest rate path to the optimal interest rate path is more than three times

as large. By implementing this policy, the ECB can again avoid approximately 72% of the

induced deviations of inflation (first panel in the last row). However, the economic costs

necessary to achieve this are much more severe in this scenario. Specifically, relative to the

allocation under the empirical policy rule (blue line), the economic contraction is, on average,

roughly 65% more severe. Most importantly, the costs in terms of economic activity that are

required to optimally stabilize medium-term inflation in the face of an oil supply shock are

more than three times as large when compared to the scenario where the ECB is able to affect

the oil price and can therefore directly address the root cause of the shock (second panel in

the last row).

6.4 Oil supply shock transmission under dual-mandate-optimal policy

To analyze the optimal policy response under a dual-mandate, we redo the previous analysis

and compute the optimal policy response to an oil supply shock, taking into account the

ECB’s impact on energy prices. The results are depicted by the magenta lines and bars in

Figure 7.

Two results are particularly noteworthy. First, by construction, under this loss function,

the ECB aims to stabilize inflation and output (first and second panels in the last row). To

do so, the optimal policy response does not entail raising interest rates quickly right away,

but, when compared to the empirically observed response of the ECB, it rather only calls

for slightly higher interest rates at the short end of the yield curve. As such, the observed

response of the ECB is much closer to the estimated optimal response under the dual-mandate

loss function than the single-mandate.

Second, we document that this benign result can again be traced back to the role of energy

prices in the monetary transmission. As shown in Figure 8, even under the dual-mandate

loss function, the additional tightening required to reach the optimal interest rate path is

much higher. At the same time, the loss as measured by deviations of inflation and output

from the target is significantly higher, since the ECB’s inflation-output trade-off worsens.

This underscores that the ability to influence energy prices is crucial not only for monetary

transmission but is also of particular importance for policymaking in the face of an energy

supply shock.

25In Figure H.3 in Appendix H, we show that this result holds even with a dual mandate loss function, where
the ECB equally considers deviations of inflation and output.
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Figure 8: The role of energy prices for monetary policy under a dual-mandate

Notes: See notes to Figure 7. We define the additional tightening required as
∑

(it,A⋆ − it,A), where it is the
impulse response of the interest rate and the superscript A⋆ indicates the counterfactual policy rule. Note
that we treat industrial production (output) as a policy target. Therefore, we define output deviations from
the target as |y| and treat them along the lines of inflation deviations in Figure 7. The impulse responses
underlying these bar charts can be found in Figure H.3 in the Appendix.

7 Conclusion

This paper examines the influence of European monetary policy on energy prices and chal-

lenges the prevalent view that the ECB has limited capacity to combat energy-price-driven

inflation. Employing a high-frequency event study we find that ECB policy decisions sig-

nificantly affect global energy prices, such as the Brent oil price and the natural gas price.

SVAR analysis corroborates a strong and persistent effect of monetary policy on oil prices as

well as on consumer energy prices, inflation, and inflation expectations. Using Lucas critique-

robust counterfactuals along the lines McKay and Wolf (2023), we establish that a substantial

part of the impact of monetary policy on headline consumer prices is transmitted via energy

prices. In particular, it is precisely the ECB’s influence on relatively flexible energy prices

that accounts for a major part of monetary policy’s ability to affect inflation in the short-

and medium-run. Furthermore, we estimate that the inflation-output trade-off faced by the

ECB is alleviated by around 50% compared to a counterfactual in which energy prices are

unaffected by the ECB’s policy decisions.

We illustrate the importance of our findings by studying the optimal conduct of monetary

policy in the face of a supply-side shock using the same empirical counterfactual method.

Specifically, we compute the mandate-optimal response for the ECB to an oil supply shock

both with the estimated effect of monetary policy on energy prices and a corresponding

counterfactual scenario in which energy prices are unaffected by changes in monetary policy.

Crucially, the mandate-optimal policy is much more contractionary once the ECB has no

control over energy prices since the inflation-output trade-off is much more severe. In this

scenario, the costs in terms of economic activity to stabilize inflation are on average more than

twice as large, highlighting the key role played by energy prices in the conduct of monetary
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policy. It is in that sense, that energy prices can be considered a friend to and not a foe of

central banks.
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A Data description

Table A.1: Detailed description of data used in the high-frequency event study regressions

Variable Description Notes Source
Global oil price Brent crude oil front-month futures

(LCOc1) price (in US dollars)
Computed the percent price
change around monetary pol-
icy announcements (ECB, Fed
and BoE)

Refinitiv
Tick History
database

ECB monetary policy
surprise

3-month OIS rate changes around ECB
monetary policy announcements

Computed based on methodol-
ogy of Jarociński and Karadi
(2020)

EA-MPD from
Altavilla et al.
(2019)

Fed monetary policy
surprise (baseline)

3-month-ahead federal funds future rate
changes around FOMC announcements

Computed based on methodol-
ogy of Jarociński and Karadi
(2020)

Gürkaynak
et al. (2005)
and Marek
Jarocinski’s
website

Fed monetary policy
surprise (robustness)

The first principal component of the
changes in ED1–ED4 around FOMC an-
nouncements

Orthogonalized monetary pol-
icy surprises uncorrelated with
macroeconomic and financial
data observed before FOMC
announcements

Bauer and
Swanson
(2023)

Bank of England mon-
etary policy surprise

3-month Libor rate changes around Bank
of England monetary policy announce-
ments

Computed based on methodol-
ogy of Jarociński and Karadi
(2020)

Cesa-Bianchi
et al. (2020)

FTSE 100 index FTSE 100 index price changes around
Bank of England monetary policy an-
nouncements

Computed from tick data Refinitiv
Tick History
database

Dutch TTF natural gas
price

Daily (closing) price changes of 1-month
and 1-year Dutch TTF futures around
ECB monetary policy announcements

Bloomberg
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Table A.2: Detailed description of data used in the VAR analysis

Variable Description Notes Source
1-year yield Germany Government 1 year yield Monthly average of daily val-

ues
Macrobond Fi-
nancial AB

5-year yield Germany Government 5 year yield Monthly average of daily val-
ues

Macrobond Fi-
nancial AB

US/EUR US-Dollar per Euro, spot rate Monthly average of daily val-
ues

Macrobond Fi-
nancial AB

Industrial Production Euro Area Industrial Production excl.
Construction

Eurostat

Brent oil price Brent crude Europe Spot price FOB, US-
Dollar per barrel

Monthly average of daily val-
ues

Energy In-
formation
Administration

CPI (headline) Euro Area Harmonized Index of Consumer
Prices

Seasonally adjusted using X13 Eurostat

HICP housing Euro Area, HICP, Housing, Water & Elec-
tricity & Gas & Other Fuels

Seasonally adjusted using X13 Eurostat

HICP transport Euro Area, HICP, Transport Seasonally adjusted using X13 Eurostat
HICP heating Euro Area, HICP, Housing, Water, Elec-

tricity, Fuel, Electricity, Gas
Seasonally adjusted using X13 Eurostat

HICP fuels Euro Area, HICP, Fuels & Lubricants for
Personal Transport Equipment

Seasonally adjusted using X13 Eurostat

HICP energy Euro Area, HICP, Energy Seasonally adjusted using X13 Eurostat
Credit spread ICE BofA Euro High Yield Index Option-

Adjusted Spread
Monthly average of daily val-
ues

FRED

Euro Area short-run
monetary policy proxy

3 month (monetary event window) OIS
surprise

Calculated based on data and
methodology by Jarociński and
Karadi (2020) (“poor-man”
approach), aggregated to
monthly frequency according
to Kilian (2024)

Jarociński and
Karadi (2020)
and authors’
calculations

Euro Area medium-run
monetary policy proxy

2 year (monetary event window) OIS sur-
prise

The same notes apply to all
monetary policy proxies

Jarociński and
Karadi (2020)
and authors’
calculations

Euro Area generic
monetary policy proxy

First principle component of 1 month to
1 year (monetary event window) OIS sur-
prises

The same notes apply to all
monetary policy proxies

Jarociński and
Karadi (2020)
and authors’
calculations

Global oil production Global oil production (million barrels/day) Baumeister
and Hamilton
(2019)

Global IP Global industrial production Baumeister
and Hamilton
(2019)

Consensus 1-year
ahead inflation expec-
tations

(GDP-) Weighted average of Germany,
France, Italy, and Spain

We use the largest four euro
area countries’ data since
the euro area aggregate data
is only available starting
from December 2002. The
(monthly) 1-year ahead expec-
tation is a weighted average of
the “Current year” and “Next
year” inflation forecasts, as in
Miranda-Agrippino and Ricco
(2021).

Consensus eco-
nomics

Oil supply news proxy Suprise in oil futures prices around OPEC
announcements

Monthly sum of daily values Känzig (2021)

As in Born and Pfeifer (2021), we demean the variables to avoid numerical problems arising

from under/overflow during the posterior computations that involve the sum of squares.

38



B High-frequency event study robustness results

Table B.1: Additional results for the event study regression for the euro area, US and UK
(Equation 1) for a 100 basis points monetary policy surprise

EA EA US US UK UK

(1) (2) mpspmFF4 mps⊥ (1) (2)

β̂100bps −3.20∗∗ −3.34∗∗ −2.24∗∗ −2.23∗∗∗ 0.37 0.36

(1.31) (1.54) (1.04) (0.83) (0.67) (0.68)

R2 (%) 3.75 3.37 2.64 3.21 0.33 0.38

N 211 182 198 197 257 246

Sample 2002:1 2002:1 1996:1 1996:1 1997:6 1997:6

2021:12 2019:12 2019:12 2019:12 2021:3 2019:12

Note: Coefficient estimates β̂100bps from the Brent crude oil price event study regression
equation pt = α + βmpst + ϵt, where t indexes monetary policy announcements. Coefficient
represents the percentage change in the Brent crude oil price in response to a 100 basis points
increase in the country-specific monetary policy surprise measure. Each column represents
the results for a different country-sample combination. Heteroskedasticity-consistent standard
errors are reported in parentheses. *, **, *** represent statistical significance levels at 10%,
5% and 1% respectively.
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Table B.2: Additional results for the event study regression for the euro area, US and UK
(Equation 1) for a 1 standard deviation monetary policy surprise

EA EA US US UK UK

(1) (2) mpspmFF4 mps⊥ (1) (2)

β̂std −0.054∗∗ −0.056∗∗ −0.078∗∗ −0.078∗∗∗ 0.020 0.019

(0.022) (0.026) (0.037) (0.029) (0.035) (0.037)

R2 (%) 3.75 3.37 2.64 3.21 0.33 0.38

N 211 182 198 197 257 246

Sample 2002:1 2002:1 1996:1 1996:1 1997:6 1997:6

2021:12 2019:12 2019:12 2019:12 2021:3 2019:12

Note: Coefficient estimates β̂std from the Brent crude oil price event study regression equation
pt = α + βmpst + ϵt, where t indexes monetary policy announcements. Coefficient represents
the percentage change in the Brent crude oil price in response to a one standard deviation
increase in the country-specific monetary policy surprise measure. Each column represents
the results for a different country-sample combination. Heteroskedasticity-consistent standard
errors are reported in parentheses. *, **, *** represent statistical significance levels at 10%,
5% and 1% respectively.
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Table B.3: Coefficient estimates β̂100bps from the natural gas price (Dutch TTF) event study
regressions.

1-month TTF 1-year TTF 1-month TTF 1-year TTF

β̂100bps −17.42∗∗∗ −12.32∗∗∗ −13.85∗∗∗ −13.41∗∗∗

(4.50) (3.12) (3.92) (3.23)

R2 (%) 2.68 2.61 1.39 2.69

Sample 2007:10-2019:12 2007:10-2019:12 2007:10-2021:12 2007:10-2021:12

N 127 127 143 143

Note: Event study regressions are of the form pt = α + βmpst + ϵt for the ECB, where
t indexes ECB policy announcements, pt is the daily change of the relevant futures price,
computed as the difference between the closing price of the ECB policy announcement day
and the closing price of the previous day. Coefficient represents the percentage change in the
Dutch TTF natural gas price in response to a 100 basis points increase in the country-specific
monetary policy surprise measure. Each column presents the event study regression for the
combination of a different TTF maturity and a different sample period. mpst is the high
frequency change in the three month Overnight Index Swap (OIS) rate with poor man’s sign
restrictions as in Jarociński and Karadi (2020). Daily Dutch TTF price data is available from
October 2007. Heteroskedasticity-consistent standard errors are reported in parentheses.
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Table B.4: Coefficient estimates β̂std from the natural gas price (Dutch TTF) event study
regressions.

1-month TTF 1-year TTF 1-month TTF 1-year TTF

β̂std −0.33∗∗∗ −0.24∗∗∗ −0.25∗∗∗ −0.24∗∗∗

(0.09) (0.06) (0.07) (0.06)

R2 (%) 2.68 2.61 1.39 2.69

Sample 2007:10-2019:12 2007:10-2019:12 2007:10-2021:12 2007:10-2021:12

N 127 127 143 143

Note: Event study regressions are of the form pt = α + βmpst + ϵt for the ECB, where
t indexes ECB policy announcements, pt is the daily change of the relevant futures price,
computed as the difference between the closing price of the ECB policy announcement day
and the closing price of the previous day. Coefficient represents the percentage change in the
Dutch TTF natural gas price in response to a one standard deviation increase increase in
the country-specific monetary policy surprise measure. Each column presents the event study
regression for the combination of a different TTF maturity and a different sample period.
mpst is the high frequency change in the three month Overnight Index Swap (OIS) rate with
poor man’s sign restrictions as in Jarociński and Karadi (2020). Daily Dutch TTF price data
is available from October 2007. Heteroskedasticity-consistent standard errors are reported in
parentheses.
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C Revisiting Gagliardone and Gertler (2023)

In a VAR using high-frequency identification of monetary policy shocks, Gagliardone and

Gertler (2023) do not find that the real oil price declines in response to a contractionary

US monetary policy shock. This contradicts our findings and much of the related literature

showing that contractionary US monetary policy shocks decrease commodity and/or oil prices

(Anzuini et al. (2012); Miranda-Agrippino and Ricco (2021); Bauer and Swanson (2023);

Degasperi et al. (2023); Miranda-Pinto et al. (2023)).26

In order to understand the source of their different result regarding the crude oil price

impulse response, we replicate the VAR in Gagliardone and Gertler (2023). There are two

limitations of this replication exercise. First, the authors are not explicit about whether

they run separate VARs for the monetary policy shock and the oil supply shock. Therefore,

since there is no explanation of a joint identification procedure, we assume they estimate two

separate VAR models. Second, the authors also measure “surprises around non-FOMC dates

on which the Federal Reserve revealed information”, but they neither specify these dates

nor grant access to the corresponding data. As a result, we cannot precisely replicate their

approach to identifying shocks across the full event set.

Through our replication analysis, we find that the different result reported by Gagliardone

and Gertler (2023) may be driven by certain empirical choices that can affect the validity of

the estimates. First, the authors aggregate monetary policy surprises from a higher frequency

to a monthly frequency by summing the surprises in a given month, yet, in the VAR, they

use average-of-period monthly data for variables available at a daily frequency. Kilian (2024)

shows that such practice can bias the impulse response estimates. Instead, he proposes using

end-of-period data, if one wishes to simply sum over the high-frequency surprises. In our

replication of their monetary policy VAR, we find that using end-of-month oil prices (see

Figure C.1), or the average price over the last three or five trading days of each month (see

Figure C.2), leads to a significant decline in real crude oil prices following a contractionary

monetary policy shock. Second, if instead one prefers average-of-period monthly prices, it

is crucial to construct the monthly surprises in line with the methodology in Kilian (2024);

adopting that approach in the VAR replication of Gagliardone and Gertler (2023) again

produces a decline in the real oil price in line with the results from our VAR framework (see

Figure C.3).27

Moreover, the oil price series used by the authors (FRED code: WTISPLC) is not contin-

26Miranda-Agrippino and Ricco (2021) include the Commodity Research Bureau (CRB) commodity price
index in their baseline VAR but do not report the IRFs. Therefore, using their replication files while keeping
true to their baseline empirical specification, we produce the commodity price index IRFs and find that the
commodity price index declines significantly in response to a contractionary US monetary policy shock (see
Figure E.8).

27The BPSVAR framework we employ allows the proxy variable to be serially correlated and predictable.
Therefore, any serial correlation or predictability arising from the aggregation scheme does not pose a problem
in our empirical framework.
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uous during the first six years of their sample, remaining constant over prolonged intervals.

Figure C.1: Replication of Gagliardone and Gertler (2023) with end-of-month real oil price

Notes: Baseline seven-variable VAR from Gagliardone and Gertler (2023). Sample is 1973M1–2019M12.
The solid line is the point estimate and the shaded areas are the 90 percent confidence bands, computed
using the wild bootstrap.
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Figure C.2: Replication of Gagliardone and Gertler (2023) with real oil price as the average
of the last 5 days in a month

Notes: Baseline seven-variable VAR from Gagliardone and Gertler (2023). Sample is 1973M1–2019M12.
The solid line is the point estimate and the shaded areas are the 90 percent confidence bands, computed
using the wild bootstrap.
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Figure C.3: Replication of Gagliardone and Gertler (2023) average-of-month real oil price
and monetary policy surprises aggregated following Kilian (2024)

Notes: Baseline seven-variable VAR from Gagliardone and Gertler (2023). Sample is 1973M1–2019M12.
The solid line is the point estimate and the shaded areas are the 90 percent confidence bands, computed
using the wild bootstrap.
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D Details on the Bayesian Proxy SVAR model

In this appendix we give more details on the implementation of the algorithm of Arias et al.

(2021) and derive equations (5) and (6). For convenience, we reproduce the VAR Equation

(4), augmented with proxies:

ỹ′
tÃ0 = ỹ′

t−1Ã1 + ϵ̃′t. (D.1)

To ensure that the augmentation with equations for the proxy variables does not affect the

dynamics of the endogenous variables, the coefficient matrices Ãℓ are specified as

Ãℓ =

 Aℓ
(n×n)

Γℓ,1
(n×k)

0
(k×n)

Γℓ,2
(k×k)

 , ℓ = 0, 1. (D.2)

The zero restrictions on the lower left-hand side block imply that the proxy variables do not

enter the equations of the endogenous variables. The reduced form of the model is

ỹ′
t = ỹ′

t−1Ã1Ã0
−1

+ ϵ̃t
′Ã0

−1
. (D.3)

Because the inverse of Ã0 in Equation (D.2) is given by

Ã0
−1

=

(
A−1

0 −A−1
0 Γ0,1Γ

−1
0,2

0 Γ−1
0,2

)
, (D.4)

the last k equations of the reduced form of the VAR model in Equation (D.3) read as

m′
t = ỹ′

t−1Ã1

(
−A−1

0 Γ0,1Γ
−1
0,2

Γ−1
0,2

)
− ϵ′tA

−1
0 Γ0,1Γ

−1
0,2 + η′

tΓ
−1
0,2, (D.5)

which is the generalization for k proxies of equations (5) and (6), with

B1 =

(
−A−1

0 Γ0,1Γ
−1
0,2

Γ−1
0,2

)
, B2 = Γ−1

0,2.

To see that only ϵ∗′t V enters the equation, we order the structural shocks so that ϵt = (ϵo′t , ϵ
∗′
t )

′,

which yields

E
[
ϵtm

′
t

]
= −A−1

0 Γ0,1Γ
−1
0,2 =

 0
((n−k)×k)

V
(k×k)

 . (D.6)

The first equality is obtained using Equation (D.5) and because the structural shocks ϵt are

by assumption orthogonal to yt−1 and ηt. The second equality is due to the exogeneity and

relevance conditions in Equations (3a) and (3b). Equation (D.6) shows that the identifying
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assumptions imply restrictions on the last k columns of the contemporaneous structural im-

pact coefficients in Ã0
−1

. In particular, if the exogeneity condition in Equation (3b) holds,

the first n−k rows of the upper right-hand side sub-matrix A−1
0 Γ0,1Γ

−1
0,2 of Ã0

−1
in Equation

(D.4) are zero. From the reduced form in Equation (D.3) it can be seen that this implies

that the first n− k structural shocks do not impact contemporaneously the proxy variables.

In turn, if the relevance condition in Equation (3a) holds, the last k rows of the upper right-

hand side sub-matrix A−1
0 Γ0,1Γ

−1
0,2 of Ã0

−1
are different from zero. From the reduced form

in Equation (D.3) it can be seen that this implies that the last k structural shocks impact

the proxy variables contemporaneously. The Bayesian estimation algorithm of Arias et al.

(2021) determines the estimates of A0 and Γ0,ℓ such that the restrictions on Ã0
−1

implied by

Equations (3a) and (3b) as well as on Ãℓ in Equation (D.2) are simultaneously satisfied, and

hence the estimation identifies the structural shocks ϵ∗t .

E BPSVAR robustness results

Figure E.1: Baseline Euro Area SVAR model: Response of the credit spread

Notes: Impulse response functions to a one standard deviation monetary
policy shock. Point-wise posterior means along with 68% and 90% point-wise
probability bands. Response of the BBB corporate bond spread in percentage
points.
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Figure E.2: Euro Area SVAR model, including global oil market variables

Notes: Euro Area model including additional variables that are typically used in models of the oil
market. Impulse response functions to a one standard deviation monetary policy shock. Point-wise
posterior means along with 68% and 90% point-wise probability bands. Horizon in months.
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Figure E.3: Euro Area SVAR model, external vs. internal instrument identification

Notes: Posterior means of Impulse response functions to a one standard deviation monetary pol-
icy shock using the external-instrument BPSVAR identification alongside in blue 68% and 90%
point-wise probability bands. Posterior mean impulse response functions to monetary policy shock
identified using the internal-instrument approach of Plagborg-Møller and Wolf (2021) are depicted
in red. To make the estimation of the IRFs using the internal instrument approach comparable to
the BPSVAR approach we use a version of the conjugate normal-inverse-wishart prior. The impulse
responses for the internal instrument approach are scaled such that they induce the same impact
effect for the 1-year yield.

Figure E.4: IRFs of natural gas prices (in dollars) and EA consumer gas prices (in euros)

Impulse responses from the baseline BPSVAR model with (i) Worlds Bank’s average,
European natural gas primary commodity price (traded and quoted in US-$) and (ii)
the natural gas component of the HICP (quoted in euros) as additional endogenous
variables. Note that, even leaving aside differences in the currency in which the prices
are quoted, these are not the same object. In particular, the HICP Gas series refers to
gas prices faced by consumers (which naturally are more sticky) while the World Bank’s
average European natural gas price commodity price is the price traded on financial
markets and faced by firms and consumers.
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Figure E.5: Euro Area SVAR model, zero proxy relevance prior threshold

Notes: Impulse responses to a euro area monetary policy shock when the prior on the relevance of
the shock for the proxy set to 0%. Impulse response functions to a one standard deviation monetary
policy shock. Point-wise posterior means along with 68% and 90% point-wise probability bands.
Horizon in months.

Figure E.6: Euro Area SVAR model including the Pandemic

Notes: Impulse response functions to a one standard deviation monetary policy shock from the
estimated BPVSAR model when including the pandemic period into the estimation sample. We
model the pandemic using the “Pandemic-Priors” approach of Cascaldi-Garcia (2022) and transform
prices to inflation rates to preserve stationarity. Due to data availability, we follow Känzig, 2023
and set to zero the values of the proxy starting in 2020. Point-wise posterior means along with 68%
and 90% point-wise credible sets. Horizon in months.
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Figure E.7: Euro Area SVAR model including different subcomponents of HICP energy

IRFs from the baseline BPSVAR model with the individual subcomponents of the HICP
as additional endogenous variables. The official Eurostat categories are called “Hous-
ing, Water, Electricity, Gas & Other Fuels”, “Transport”, “Housing, Water, Electricity,
Fuel, Electricity, Gas & Other Fuels”, and “Fuels & Lubricants for Personal Transport
Equipment”. Their weights in the headline HICP are, in percent, 16.5, 15.4, 5.9, and
4.3, respectively (2019 values).

52



Table E.1: Literature review: Trough industrial production response to 100 bps tightening

Model Sample period Trough response

A. US Models

Bauer and Swanson (2023) (Original sample) 1973
...1− 2020

...2 −5.1%

Bauer and Swanson (2023) (Starting 2002)a 2002
...1− 2020

...2 −10.5%

Miranda-Agrippino and Ricco (2021) (Original sample) 1979
...1− 2014

...12 −1.7%

Miranda-Agrippino and Ricco (2021) (Starting 1999) 1999
...1− 2018

...12 −9.2%

Jarociński and Karadi (2020) (Original Sample) 1984
...2− 2016

...12 −3.6%

Jarociński and Karadi (2020) (Starting 1999) 1999
...1− 2016

...12 −8.7%

IKKS US SVAR (starting 1990) 1990
...1− 2019

...12 −1.3%

IKKS US SVAR (starting 1999) 1999
...1− 2019

...12 −6.9%

B. EA Models

Jarociński and Karadi (2020) 1999
...1− 2016

...12 −17.4%

Corsetti et al. (2024) 1999
...1− 2021

...12 −32%

Badinger and Schiman (2023) 1999
...1− 2019

...12 −6.6%

This paper (main specification) 2002
...1− 2019

...12 −9.3%

This paper (from 1999) 1999
...1− 2019

...12 −6.1%

C. UK Models

Braun et al. (2024) 1997
...1− 2019

...12 ≈ −6.6%

D. Summary

Model average Start < 1999 -3.7%
Model average Start ≥ 1999 -11.9%

Notes: We report the trough Industrial Production response to a peak of one percentage point
increase in the 1-year government bond yield of the respective country. As Braun et al. (2024)
use monthly GDP instead of industrial production, we rescale their estimate to industrial
production by taking into account the relative volatilities of the series (see Georgiadis et al.,
2024 for a similar approach). For the euro area, the cited studies use the 1-year Bund yield.
IKKS US SVAR refers to the baseline SVAR model presented in Section 3 of this paper, where
we replace the euro area data with the corresponding time series for the US. See Figures E.9
and E.10.
a The yield fails to increase in response to a contractionary monetary policy shock when
starting the sample from 1999. Therefore, we chose to start the sample in 2002.
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Figure E.8: Baseline VAR from Miranda-Agrippino and Ricco (2021)
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Notes: Baseline six-variable VAR from Miranda-Agrippino and Ricco (2021).
MPI stands for the informationally robust monetary policy surprise series
the authors construct. The shock is normalized to induce a 100 basis point
increase in the 1-year rate. Sample is 1979M1–2014M12. Shaded areas are 90
percent posterior coverage bands.

Figure E.9: US SVAR model, starting 1990

Notes: Impulse responses to a one standard deviation monetary policy shock. Point-wise posterior
means along with 68% and 90% point-wise credible sets. Horizon in months. Impulse responses for
variables that do not correspond to interest rates or inflation rates are expressed in percent. Impulse
responses for inflation rates and interest rates are expressed in annualized percentage points.
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Figure E.10: US SVAR model, starting 1999

Notes: Impulse responses to a one standard deviation monetary policy shock. Point-wise posterior
means along with 68% and 90% point-wise credible sets. Horizon in months. Impulse responses for
variables that do not correspond to interest rates or inflation rates are expressed in percent. Impulse
responses for inflation rates and interest rates are expressed in annualized percentage points.
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F Discussion of the magnitude of the oil price response

F.1 A simple theoretical model

To rationalize why euro area monetary policy affects global energy prices and why energy

prices are particularly sensitive to monetary policy induced changes in demand, we build a

partial equilibrium model of the global market for energy goods. In particular, we assume

that energy goods are traded globally, energy prices are flexible and energy supply is fixed at

Ē in the short run as in Bayer et al. (2023).28 Furthermore, we assume that world demand

(Y W
t ) is allocated according to a standard CES aggregate of energy goods and non-energy

goods, with α denoting the weight of energy goods in the aggregate basket.29 Under these

assumptions we can write the demand (Y D
E,t) for and supply of energy goods (Y S

E,t) as the

following system of equations

Y D
E,t = α

( PE
t

PW
t

)−σ
Y W
t , Y S

E,t = Ē, (F.1)

with σ as the elasticity of substitution between energy and non-energy goods and PE
t /PW

t

as the relative price of energy goods with respect to the world aggregate. Imposing market

clearing (Y S
E,t = Y D

E,t) and log-linearizing, we can write the equilibrium relation as

p̂Et,r =
ŷWt
σ

(F.2)

with ŷwt denoting deviations of global demand from its steady state and (p̂Et,r) as the corre-

sponding deviation of the relative price of energy goods.

Given that the euro area constitutes approximately 12% of global GDP and that the ECB’s

monetary policy decisions have sizable spillovers to other countries (Miranda-Agrippino and

Nenova (2022), Ter Ellen et al. (2020)), an increase in the ECB’s policy rate affects global

demand ŷWt , which in turn affects the relative price of energy. In particular, recent estimates

on the elasticity of substitution between energy and non-energy goods imply σ ∈ [0.1, 0.2]

(Bachmann et al. (2022) and Bayer et al. (2023)), i.e. an ECB-induced 1% decrease in

demand causes the relative price of energy goods to fall by 5% to 10%. The intuition is that,

given a low elasticity of substitution, the demand curve is very steep. When confronted with

a vertical short-run supply curve, a change in demand will result in strong price adjustments

in order to reach an equilibrium between supply and demand. This stylized mechanism not

28At the intraday frequency the assumption of flexible energy prices follows immediately from our high-
frequency event study and at the monthly frequency this assumption is also in line with the micro-data
underlying the computation of the HICP as for instance Aucremanne and Dhyne (2004) show that the prices
of energy goods are on average updated every month.

29The aggregator is given by Y W
t = [α

1
σ Y

σ−1
σ

E,t + (1− α)
1
σ Y

σ−1
σ

NE,t] with YNE,t as non energy goods.
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only rationalizes why ECB policy decisions affect energy prices but the assumptions on the

energy market structure also offer one possible interpretation for why energy prices are more

responsive to changes in monetary policy than prices of other goods. In the next section we

discuss how this this partial equilibrium model of the energy market is embedded in the fully-

fledged, state-of-the-art general equilibrium model of Bayer et al. (2023) and show that in

this model, an increase in the ECB’s policy rate of similar magnitude than the one estimated

in our BPSVAR, indeed implies a similar drop in the price of energy goods.

F.2 The mechanism in general equilibrium

Figure 2 reveals that a standard-deviation monetary policy shock, which increases the short-

term interest rate by roughly 5 basis points, leads to an immediate fall in the oil price

by approximately 2%. To shed some light on the plausibility on the magnitudes we use a

representative agent version of the HANKmodel of Bayer et al. (2023) to gauge the plausibility

of out results through the lens of a state-of-the-art model that features an energy market along

the lines sketched above.30

The model of Bayer et al. (2023) is an arguably standard model of a monetary union with

two countries and nominal frictions in terms of price and wage setting. The crucial ingredient

is that firms (households) in these countries use (consume) energy goods. Energy goods are

assumed to be in fixed supply and, crucially, as the model does not feature a small open

economy assumption, a change in the demand for energy from households and firms in the

monetary union, will affect the price of energy. Therefore the model features a market for

energy goods along the lines of the one that we sketch in Section F.1. To use the model for

our purposes we add a monetary policy shock to the Taylor Rule of the monetary authority

in the monetary union, while keeping the calibration and all other model features exactly as

in Bayer et al. (2023).

Figure F.1 illustrates that in this state-of-the-art model, a monetary shock that leads to

roughly the same interest rate response as in our empirical model, causes energy prices to fall

by even more than what we find empirically. The intuition for the large volatility of energy

prices is that energy goods are in fixed supply and the elasticity of energy- and non-energy

goods is assumed to be non-zero but relatively low in line with Auclert et al. (2023) and

Bachmann et al. (2022). Therefore, as the market for energy goods has to clear, the energy

price has to move a lot to realign the demand with the supply of energy goods. Intuitively, all

else equal, a monetary shock induces a fall in demand for all goods. Given the low elasticity

of household demand to a change in the energy price, the price of these energy goods has to

fall a lot to ensure that households ultimately buy the fixed amount of energy goods supplied.

30We thank Fabian Seyrich for sharing the code with us.
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Figure F.1: IRF of the energy price to a monetary shock in the model of Bayer et al. (2023)
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F.3 Relative volatilities of the interest rate and oil price

An arguably simpler argument for why the “elasticity” of oil prices to a monetary shock that

we find empirically is not excessively large can be made by taking into account the relative

volatilities of these variables. In line with the intuition sketched above, the oil price is very

volatile compared to the short-term interest rate.

Figure F.2 illustrates this by plotting the impulse responses of the interest rate and the oil

price in terms of their unconditional and conditional standard deviations (i.e. the standard

deviation of their one-step ahead forecast error). It becomes apparent that, when measured in

terms of the standard deviation of the respective forecast error, the average monetary policy

shock causes the interest rate to increase by approximately half a standard deviation and

the oil prices to fall by roughly a quarter of the standard deviation. Comparing this to the

responses in levels of 5 basis points and 2% it becomes apparent that the 2% fall in the oil

price is by no means excessively large. Thus, under the assumption that the forecast error

is normally distributed around zero, an unexpected 5 basis point surprise in the interest rate

is less likely than an unexpected 2% fall in the oil prices, as the latter only corresponds to a

quarter of a standard deviation while the former corresponds to a surprise of half a standard

deviation. The second row, which plots the IRFs in terms of their unconditional standard

deviations, underscores the fact, that even unconditionally, the two magnitudes are more than

comparable. In line with the intuition that we derived above, the oil price is just an arguably

much more volatile object.
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Figure F.2: IRF of the oil price to a monetary policy shock in standard deviation units
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G Additional material on the OPEC counterfactual

G.1 Quantifying the role of global energy price for monetary policy trade-

offs

Our framework not only allows us to quantify how the ability of the central bank to influence

energy prices shapes the transmission of monetary policy to domestic inflation and inflation

expectations but also enables us to speak to the role that this ability plays in the inflation-

unemployment/inflation-output trade-off that central banks typically face. We follow Mankiw

(2001) and Barnichon and Mesters (2021) and aim to measure the central banks’s average

trade-off, meaning we aim to measure the average fall in inflation caused by a change in policy

that increases the unemployment rate by 1ppt or output by 1%.

As shown by Barnichon and Mesters (2021) the inflation-unemployment trade-off can be

quantified using standard semi-structural methods such as our BPSVAR and can be estimated

by a statistic that the authors coin “Phillips-Multiplier”. In particular, the authors suggest

to compute the sequence of “Phillips-Multipliers” (PA) as

Ph
A =

Θh
π̄,νmp,A

Θh
Ū,νmp,A

. (G.1)
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Figure G.1: What if EA monetary policy shocks do not affect oil prices (including credible
sets)

Notes: Impulse response functions to a one standard deviation monetary policy shock showing the point-wise
posterior means along with 68% point-wise credible sets in blue. Horizon in months. The golden line with
diamonds shows the point-wise posterior means of the counterfactual where EA monetary policy does not
affect the oil price. We approximate the solution to the counterfactual using the “best Lucas-Critique-robust
approximation” of McKay and Wolf (2023), where we follow McKay and Wolf (2023) and condition on the
point estimate to the monetary policy shock depicted in Figure 2. We also plot the 68% point-wise credible
sets of this approximation in yellow.

where Θh
x̄,νmp,A measures the horizon h impulse response of the average of variable x to

a unit monetary policy shock νmp under the OPEC policy rule rule described by A. For

each variable x and horizon h this quantity can be computed by the average of the running

cumulative sum of impulse responses Θh
x̄,νmp,A = 1

h

∑h
j=0Θ

j
x,νmp,A.

The “Phillips-Multiplier” at period h measures how the average rate of inflation changes

if monetary policy would engineer a 1ppt increase in the unemployment rate over the next

h periods. In other words, this statistic measures how the expectation (forecast) of inflation

changes if monetary policy announces at period t that it will engineer an average increase of

unemployment by 1ppt. over the next h horizon. Intuitively, in the textbook three equation

New Keynesian model of Gaĺı (2015), the “Phillips-Multiplier” is constant across periods and

recovers the slope of the Phillips-curve with respect to unemployment (see Barnichon and

Mesters (2021))

Given that this statistic can be computed solely based on impulse responses, we can also

ask, how this measure of the inflation-unemployment trade-off would change if the ECB would
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not affect global energy prices as in Section 5. In particular, as in Section 5 we assume that

OPEC follows a counterfactual policy rule Ã aims to stabilize the oil price and calculate

Ph
Ã =

Θh
π̄,νmp,Ã

Θh
Ū,νmp,Ã

. (G.2)

To calculate this statistic we transform IRFs of industrial production to IRFs of unem-

ployment by (i) transforming IRFs of industrial production to its GDP counterpart by taking

into account the relative volatilities (3.3) and then compute the implied IRF of unemploy-

ment using Okun’s law with a Coefficient of 2. Figure G.2 compares the baseline sequence

of the Phillips-Multipliers as depicted by the blue lines and the counterfactual sequence of

Phillips-Multipliers in depicted in gold. By comparing the blue and the golden line in Figure

G.2 it becomes apparent that the ability to affect global energy prices plays a crucial role for

the inflation output trade-off that the ECB faces. For instance, if the ECB were to engineer

an increase in unemployment by 1ppt over the next year (P12
A ), this is estimated to yield a

fall of average inflation of roughly 1.8% in the case where the ECB can affect energy prices.

This value lies in the ballpark of the estimates of Barnichon and Mesters (2021). But this

statistic changes dramatically in the counterfactual scenario, where this only brings about a

fall in average inflation of about 0.8%. Thus, the ability of the ECB to affect global energy

prices alleviates the unemployment-inflation trade-off by approximately 55% ((1.8-0.8)/1.8).

When viewed through the lens of the textbook New-Keynesian model, this implies that the

slope of the Phillips-curve is steeper, when monetary policy can affect fast-moving energy

prices.

As quantifying the inflation-unemployment trade-off while sticking to our baseline model

we have to take a stand on how a monetary policy-induced change in industrial production

translates into a change in unemployment. Therefore we also compute the same statistic

but replace the impulse response of average unemployment with the response of average

industrial production, which is what report in the main text. To be more precise, we define

the “Output-Phillips-Multiplier” as

Ph
Ã =

Θh
π̄,νmp,Ã

Θh
Ȳ ,νmp,Ã

, (G.3)

where Θh
Ȳ ,νmp,Ã

measures the response of average industrial production to a monetary policy

shock. This allows us to quantify the inflation-output trade-off, without having to make

additional assumptions on the underlying mapping of output to unemployment. The results

are shown in Figure 5 in the main text.
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Figure G.2: Inflation-Unemployment trade-off under Baseline and Counterfactual OPEC rule
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Notes: Point-wise median of the Phillips-Multiplier under the baseline policy
rule alongside 50% credible sets in blue. Phillips-Multiplier estimated using
the point-estimate of the Least-squares approximation of the counterfactual
impulse responses depicted in in gold. To calculate this statistic we transform
IRFs of industrial production to IRFs of unemployment by (i) transforming
IRFs of industrial production to its GDP counterpart by taking into account
the relative volatilities (3.3) and then compute the implied IRF of unemploy-
ment using Okun’s law with a Coefficient of 2. We plot 68% credible sets to
not distort the scale of the figure as the posterior is very much skewed to the
left.

H Further material for the optimal policy counterfactuals

H.1 Deriving the optimal policy rule

Focusing on a single variable xi, Equation (18) implies that the space of possible allocations

that the policymaker can achieve for this variable is given by

xi =

nν∑
j=1

Θxi,νj ,A × νj . (H.1)

Plugging this expression into Equation (17) and taking the first-order conditions with respect

to each νj , one arrives at the condition

nx∑
i=1

λiΘ
′
x1,ν,AW × xi = 0. (H.2)
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For each xi the term in front of the sum describes how a change in the policy instruments

ν would translate into a change in the endogenous variable xi and weights these changes

over time using the time discount matrix W . All the implied changes are then summed over

all variables xi using the policy weight λi, which translates them into changes in the loss

function of Equation (17). This rule then implies that the (weighted) sum of changes in the

objective function resulting from a change in the policy instruments ν has to equal zero. In

other words, the gradient of the loss function with respect to the policy instruments has to

be set to zero at the optimum.

This condition can be encapsulated into the matrices Ax,Az of the sequence-space repre-

sentation of the model in Equation (10) by noting that the optimality condition in Equation

(H.2) can be written as

nx∑
i=1

λiΘ
′
xi,ν,AWxi = A∗

xx = 0. (H.3)

H.2 Estimating the impulse responses under counterfactual optimal policy

The procedure for the counterfactual optimal policy is very similar to the one sketched in the

main text for the baseline optimal policy exercise but involves two additional steps.

First, we estimate impulse responses to a generic identified oil supply shock. We use the

same endogenous variables as in our baseline BPSVAR model and include the 5-year German

Bund yield. All variables enter the estimation in log levels if they are not already expressed

in percentage terms.

Second, we identify the euro area conventional monetary policy and forward guidance

shocks by combining the high-frequency proxies with the magnitude and sign restrictions

described in the text. Again we use the same variables and transformations as in step 1.

Third, we use the same endogenous variables and sample as in the first step to estimate the

impulse responses to a short- and long-run oil supply news shock in line with the description

in Section 5.3.

Fourth, we compute the posterior distribution of each of the counterfactual impulse re-

sponses, where the euro area monetary policy shocks from the second step do not affect the by

applying the procedure of McKay and Wolf, 2023 to each draw from the posterior distribution

of the second and third step.

Fifth, we condition the impulse responses from the first step and compute the optimal

policy counterfactual for each draw from the posterior distribution of the fourth step.

Lastly, we plot the point-wise mean which can be interpreted as summarizing the pos-

terior distribution of impulse responses under the optimal (counterfactual) policy response

conditional on the data and the impulse responses from step 1.
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H.3 Additional figures for the optimal policy exercise

Figure H.1: Approximation error for the optimal policy exercise under exogenous oil prices

Notes: See notes to Figure 7.

Figure H.2: Approximation error for the optimal policy exercise under exogenous oil prices

Approximation error

Implied by
exog. oil price

Notes: The left panel reports the impulse responses to the oil supply shock as well the transmission under
the optimal policy when the ECB can (black) and cannot (green) affect the oil prices. The purple line shows
the difference between the oil price response in the baseline case (blue) and the path of the oil price under
the counterfactual optimal policy. As these two should coincide in theory, the difference can be traced to
the approximation error from the “best Lucas-Critique-robust approximation”. The right panel shows that,
although the approximation may perform poorly for some horizons, the implied average changes for the oil
price closely correspond to the baseline case, giving an average approximation error of close to zero.
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Figure H.3: Impulse responses to an oil supply shock (blue) under Dual-Mandate optimal
monetary policy when euro area monetary policy can (magenta) and cannot (purple) affect
the Brent oil price

Implied by
exog. oil price

Approximation error

Notes: See notes to Figure 7. Under a dual mandate, we specify a loss function that gives a weight of λ = 1
to y-o-y inflation and deviations of GDP from the steady state. To map industrial production deviations into
GDP deviations, we scale the hypothetical equal weight of 1 that we want to give to GDP by the relative
variance of GDP and industrial production (≈ 1/3.3). Note that we treat industrial production as a policy
target in the plot in the last row and therefore define IP deviations from the target as |y|. This is different
from the scale used in Figure 7, where stabilizing output was not a target of the policymaker.
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